

Cathode-ray tubes

Elcoma – Philips Electronic Components and Materials Division – embraces a world-wide group of companies operating under the following names:

IBRAPE PHILIPS

MBLE

Miniwatt **Signotics**

Mullard VALVO

Elcoma offers you a technological, partnership in déveloping your systems to the full. A partnership to which we can bring

- world-wide production and marketing
- know-how
- systems approach
- continuity
- broad product line
- fundamental research
- leading technologies
- applications support
- quality

CATHODE-RAY TUBES

		page
Selection guide		
Monoaccelerator tubes	 	1B
Post-deflection accelerator tubes	 	1C
Direct-view storage tubes	 	1C
Monitor and display tubes		
Flying spot scanner tube	 	1D
General		
List of symbols	 	3
Operational recommendations	 	5
Photometric units	 	
Type designation	 	13
Screen types	 	
Device data		
Instrument tubes	 	51
Survey of types	 	52
Monitor and display tubes		
Survey of types	 	322
Flying spot scanner tube		
Accessories	 	397

DATA HANDBOOK SYSTEM

Our Data Handbook System comprises more than 50 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks:

ELECTRON TUBES

BLUE

SEMICONDUCTORS

RED

INTEGRATED CIRCUITS

PURPLE

COMPONENTS AND MATERIALS

GREEN

The contents of each series are listed on pages iv to viii.

The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification.

Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually).

Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover.

Product specialists are at your service and enquiries will be answered promptly.

ELECTRON TUBES (BLUE SERIES)

The blue series of data handbooks is comprised of the following parts:

- T1 Tubes for r.f. heating
- T2a Transmitting tubes for communications, glass types
- T2b Transmitting tubes for communications, ceramic types
- T3 Klystrons, travelling-wave tubes, microwave diodes
- ET3 Special Quality tubes, miscellaneous devices (will not be reprinted)
- T4 Magnetrons
- T5 Cathode-ray tubes
 Instrument tubes, monitor and display tubes, C.R. tubes for special applications
- T6 Geiger-Müller tubes
- T7 Gas-filled tubes

Segment indicator tubes, indicator tubes, dry reed contact units, thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes, associated accessories

T8 Picture tubes and components

Colour TV picture tubes, black and white TV picture tubes, colour monitor tubes for data graphic display, monochrome monitor tubes for data graphic display, components for colour television, components for black and white television and monochrome data graphic display

T9 Photo and electron multipliers

Photomultiplier tubes, phototubes, single channel electron multipliers, channel electron multiplier plates

- T10 Camera tubes and accessories
- T11 Microwave semiconductors and components
- T12 Vidicons and Newvicons
- T13 Image intensifiers
- T14 Infrared detectors

SEMICONDUCTORS (RED SERIES)

The red series of data handbooks comprises:

S1	Diodes
	Small-signal germanium diodes, small-signal silicon diodes, voltage regulator diodes(< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
S2	Power diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), rectifier stacks, thyristors, triacs
S 3	Small-signal transistors
S4a	Low-frequency power transistors and hybrid modules
S4b	High-voltage and switching power transistors
S 5	Field-effect transistors
S6	R.F. power transistors and modules
S7	Microminiature semiconductors for hybrid circuits
S8	Devices for optoelectronics
	Photosensitive diodes and transistors, light-emitting diodes, displays, photocouplers, infrared sensitive devices, photoconductive devices.
S 9	Power MOS transistors
S10	Wideband transistors and wideband hybrid IC modules

INTEGRATED CIRCUITS (PURPLE SERIES)

The purple series of data handbooks comprises:

EXISTING SERIES

IC1	Bipolar ICs for radio and audio equipment
IC2	Bipolar ICs for video equipment
IC3	ICs for digital systems in radio, audio and video equipment
IC4	Digital integrated circuits CMOS HE4000B family
IC5	Digital integrated circuits — ECL ECL10 000 (GX family), ECL100 000 (HX family), dedicated designs
IC6	Professional analogue integrated circuits
IC7	Signetics bipolar memories
IC8	Signetics analogue circuits
IC9	Signetics TTL logic
IC10	Signetics Integrated Fuse Logic (IFL)
IC11	Microprocessors, microcomputers and peripheral circuitry

NEW SERIES

ICO1N Radio, audio and associated systems
Bipolar, MOS

ICO2N Video and associated systems
Bipolar, MOS

ICO3N Telephony equipment
Bipolar, MOS

ICO4N HE4000B logic family

IC04N HE4000B logic family CMOS

IC05N HE4000B logic family uncased integrated circuits

CMOS CMOS

IC06N PC54/74HC/HCU/HCT logic families HCMOS

ICO7N PC54/74HC/HCU/HCT uncased integrated circuits HCMOS

IC08N 10K and 100K logic family ECL

ICO9N 54/74: STD, LS, S, F logic series

IC10N Memories MOS, TTL, ECL

IC11N Analogue - industrial

IC12N Semi-custom gate arrays & cell libraries ISL, ECL, CMOS

IC13N Semi-custom integrated fuse logic IFL series 20/24/28

IC14N Microprocessors, microcontrollers & peripherals Bipolar, MOS

Note

Books available in the new series are shown with their date of publication.

(published 1984)

COMPONENTS AND MATERIALS (GREEN SERIES)

The green series of data handbooks comprises:

C1	Assemblies for industrial use PLC modules, PC20 modules, HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input devices, hybrid ICs
C2	Television tuners, video modulators, surface acoustic wave filters
C3	Loudspeakers
C4	Ferroxcube potcores, square cores and cross cores
C5	Ferroxcube for power, audio/video and accelerators
C6	Synchronous motors and gearboxes
C7	Variable capacitors
C8	Variable mains transformers
C9	Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators, compact integrated oscillators, quartz crystal cuts for temperature measurements
C10	Connectors
C11	Non-linear resistors Voltage dependent resistors (VDR), light dependent resistors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC)
C12	Variable resistors and test switches
C13	Fixed resistors
C14	Electrolytic and solid capacitors
C15	Film capacitors, ceramic capacitors
C16	Permanent magnet materials
C17	Stepping motors and associated electronics
C18	D.C. motors
C19	Piezoelectric ceramics

C20 Wire-wound components

SELECTION GUIDE

SELECTION GUIDE CATHODE-RAY TUBES

preferred types

Monoaccelerator tubes

type*	standard phosphor	display	accelerator deflection voltage coefficient	deflection coefficient	tion	line width	max. bandwidth	heater max. current overall	max. overall	special features
		mm ²	>	V/cm hor. vert.	V/cm . vert.	шш	MHz	at 6,3 V length mA mm	length mm	ul .
D7-221	6	60 × 36	1000	12,5	20	0,28	10	100**	225	low profile screen, reversed x and y plates
D7-222	67	60 × 36	1000	12,5	20	0,28	10	240	225	low profile screen, reversed x and y plates
D10-180.	ĞΥ	70 × 56	2000	36	23	0,2	25	240	240	dynamic deflection defocusing correction, internal magnetic correction
D10-181.	6∀	70 × 56	2000	36	23	0,2	25	***	240	dynamic deflection defocusing correction, internal magnetic correction
D12-130/119	βλ	80 × 64	2000	32	21	0,2	25	**001	257	internal magnetic correction, internal graticule
D14-361/93	GY, GM, GH	100 × 80	2000	19	11,55	0,30	25	**	333	vertical scan magnification, internal magnetic correction, internal graticule
D14-362/93	GY, GM, GH	100 × 80	2000	19	11,5 0,30	0,30	25	240	333	vertical scan magnification, internal magnetic correction, internal graticule

 $^{^{\}ast}$ For the blanks in the type numbers insert phosphor code. * Low-power heater.

es
윽
=
ţ
era
accel
ection
lef
ost-(
0

type*	standard	standard display	first	final	deflec	tion	deflection line	max.	heater	max.	special features
	phosphor	area	accelerator voltage	accelerator accelerator coefficient width bandwidth current voltage voltage	coeffi	cient	width	bandwidth	current at 6,3 V	overall	
	R	mm ²	k <	×	V/cm hor. vert.		mm	MHz	mA	mm	F
D14-262.	ВН	100 × 80 2	2	4	19,5	10,5	19,5 10,5 0,35 15-20	15-20	240	333	
D14-370/93 GH	В	100 × 80 2	2	10	8,0	4,0 0,35	0,35	75	240	338	internal magnetic correction,
D14-380/93 GH	НЫ	100 × 80 2,2	2,2	16,5	8,3	4,0	8,3 4,0 0,35 150	150	240	338	internal graticule internal magnetic correction, internal graticule

* For the blanks in the type numbers insert the phosphor code.

Direct-view storage tubes

	diam'r.	fine of	2014:000	000000000	dofloo	4:00	d+Circ ouil	Pootor.	No.	coord fostures	
type	area	accelerator	speed	viewing coefficient	coeffi	cient	speed viewing coefficient	current	overall	special reaction	
		voltage		time				at 6,3 V length	length		
	mm ²	K <	div/μs	s	V/cm hor. vert.	V/cm or. vert.	mm	mA	m m		
L14-131GH/55 90 × 72	90 × 72	8,5	1,25 > 90	06 ≪	9,5	9,5 8,5	0,4	300	445	split-beam writing gun, internal	
										graticule	
L14-150GH/55	90 × 72 8,5	8,5	2,5	> 90	9,5	9,5 4,1	0,35	240	452	internal graticule	
L14-140GH/95	90 × 72	10	1000*	1000* ≥ 15*	18,5 4,8	4,8	0,4	240	454	charge transfer, vertical-scan	
							8			magnification with quadrupole	
		~								lenses, internal graticule	

^{*} In fast storage mode.

tubon	cann
+	-
1	d
200	2
7	3
Pour	dila
400	5
Acon	5
2	-

type*	standard	display area mm²	minimum resolution	deflection angle	neck diameter mm	heater current at 6,3 V mA	max. overall length mm	special features
M17-142.	WE	124 × 93	1050 lines	700	28	240	234	electrostatic focusing
M17-143.	WE	124 × 93	1050 lines	200	28	240	240	electrostatic focusing, bonded faceplate, metal-mounting band
M17-144.	WE	124 × 93	1050 lines	200	28	240	234	electrostatic focusing, special version for photography
M17-145.	WE	124 × 93	1050 lines	200	28	240	240	electrostatic focusing, bonded faceplate, metal-mounting band, special version for photography
M38-200.	GH, WA, WE	200 × 270	1728 x 2288 pixels	200	37	190	484,5	electrostatic focusing, very high resolution

^{*} For the blanks in the type numbers insert the phosphor code.

Flying spot scanner tube

type*	standard	useful screen diameter	accelerator	resolution	deflection angle	heater current at 6,3 V	special features
		mm	k <	lines		mA	
213-110.	0.5	108	25	1000	400	300	magnetic deflection and focusing

^{*} For the blanks in the type number insert the phosphor code.

GENERAL

LIST OF SYMBOLS

Symbols denoting electrodes and electrode connections	
Heater	f
Cathode	k
Grid	
Grids are distinguished by means of an additional numeral; the electrode nearest to the cathode having the lowest number	g
Deflection plates intended for deflection in horizontal direction	x ₁ , x ₂
Deflection plates intended for deflection in vertical direction Sectioned deflection plates are indicated by an additional decimal e.g. y ₁ 1 y ₁ 2 and y ₂ 1 y ₂ 2	Y1, Y2
External conductive coating	m
Fluorescent screen	Q
Tube pin which must not be connected externally	i.c.
Tube pin which may be connected externally	n.c.
Table pitt within that be controlled externally	
Symbols denoting voltages	
Symbol for voltage, followed by an index denoting the relevant electrode	V
Heater voltage (r.m.s. value)	Vf
Peak value of a voltage	Vp
Peak-to-peak value of a voltage	V _(p-p)
Symbols denoting currents	
Symbol for current followed by an index denoting the relevant electrode	1
Heater current (r.m.s. value)	If
	·
Symbols denoting powers	
Dissipation of the fluorescent screen	Wg
Grid dissipation	Wg
Symbols denoting capacitances	
See IEC Publication 100.	
Symbols denoting resistances	
Symbol for resistance followed by an index for the relevant	
electrode pair. When only one index is given the second electrode is the cathode	R
order ode to the outhout	11

When R is replaced by Z the "resistance" should read "impedance"

CRTs GENERAL

Symbols denoting various quantities

 Luminance
 L

 Frequency
 f

 Magnetic field strength
 H

 Deflection coefficient
 M

 Scan magnification
 Msc

Scan magnification M_{SC}
Bandwidth B
Line width I.w.

е

tp

Eccentricity
Pulse duration

OPERATIONAL RECOMMENDATIONS

GENERAL

Unless otherwise stated the published data are typical values.

TYPICAL OPERATION

Under this heading in the data sheets, the conditions are given which result in the specified performance. This performance represents the best compromise for the intended applications of the tube.

LIMITING VALUES

Unless otherwise stated the tubes are rated according to the absolute maximum rating system.

Limiting values are in accordance with the applicable rating system as defined by IEC publication 134. Reference may be made to one of the following 3 rating systems.

Absolute maximum rating system. Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment components spread and variation, equipment control adjustment, load variations, signal variation, environmental conditions, and spread or variations in characteristics of the device under considerations and of all other electronic devices in the equipment.

Design-maximum rating system. Design-maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.

^{*} A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

CRTs GENERAL

Design-centre rating system. Design-centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device* of a specified type as defined by its published data, and should not be exceeded under average conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply-voltage variation, equipment component spread and variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations or spread in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design-centre value for the intended service is exceeded with a bogey electronic device* in equipment operating at the stated normal supply voltage.

If the tube data specify limiting values according to more than one rating system the circuit has to be designed so that none of these limiting values is exceeded under the relevant conditions.

In addition to the limiting values given in the individual data sheets the directives in the following paragraphs should be observed.

HEATER SUPPLY

The heater voltage must be within \pm 7% of the nominal value when the supply voltage is at its nominal value, and when a tube having the published heater characteristics is employed. This figure is permissible only if the voltage variation is dependent upon more than one factor. In these circumstances the total tolerance may be taken as the square root of the sum of the squares of the individual deviations arising from the effect of the tolerances of the separate factors, providing none of these deviations exceeds \pm 5%. Should the voltage variation depend on one factor only, the voltage variation must not exceed \pm 5%.

For maximum cathode life it is recommended that the heater supply be stabilized at the nominal heater voltage. Any deviation from this heater voltage has a detrimental effect on tube performance and life, and should therefore be kept to a minimum. Such deviations may be caused by:

- mains voltage fluctuations;
- spread in the characteristics of components such as transformers, resistors, capacitors, etc.;
- spread in circuit adjustments:
- operational variations.

Cathode-ray tubes with a quick-heating cathode should not be used in series with other tubes.

CATHODE TO HEATER VOLTAGE

The voltage between cathode and heater should be as low as possible and never exceed the limiting values given in the data sheets of the individual tubes. Operation with the heater positive with respect to the cathode is not recommended.

In order to avoid excessive hum the a.c. component of the heater to cathode voltage should be as low as possible and never exceed 20 V r.m.s. (mains frequency). A d.c. connection should always be present between heater and cathode. Unless otherwise specified the maximum resistance should not exceed 1 M Ω ; the maximum impedance at mains frequency should be less than 100 k Ω .

INTERMEDIATE ELECTRODES (between cathode and final accelerator)

In no circumstances should the tube be operated without a d.c. connection between each electrode and the cathode. The total effective impedance between each electrode and the cathode should be as low as possible and never exceed the published maximum value.

* A bogey tube is a tube whose characteristics have the published nominal values for the type. A bogey tube for any particular application can be obtained by considering only those characteristics which are directly related to the application.

ELECTRODE VOLTAGES

The reference point for electrode voltages is the cathode. For cathode drive service the reference point is grid 1.

Grid cut-off voltages

Values are given for the limits of grid cut-off voltage at the specified first accelerator voltage. The brightness control voltage should be arranged so that it can handle any tube within the limits shown, at the appropriate first accelerator voltage.

First accelerator voltage

The first accelerator electrode of a so-called unipotential lens provides independent focus and brightness controls by applying a fixed voltage. Care should be taken not to exceed the maximum and minimum limits for reasons of reliability and performance.

Focusing voltage

The focusing voltage (V_{g3}) should be adjusted to optimum spot size; the voltage may depend on the beam current.

For automatic pre-adjustment (autofocus) of oscilloscope tubes, ΔV_{g3} should be derived from the grid drive.

Astigmatism control voltage

To achieve optimum performance under all conditions it is desirable to apply a voltage for control of astigmatism (a difference in potential of this electrode and the y plates). The required range to cover any tube is given in the relevant data.

Deflection plate shield voltage

It is essential that the deflection plate shield voltage equals the mean y plate voltage.

Geometry control voltage

By varying the potential of the geometry control electrode, the necessary range of which is given in the relevant data, the occurrence of pin-cushion and barrel-pattern distortion can be controlled.

Deflection voltages

For optimum performance it is essential that true symmetrical voltages are applied. It should further be noted that the mean x and y-plate potentials must be equal. Moreover the deflection plate shield voltage, the mean astigmatism control voltage, if applicable the mean beam centring voltage and the geometry control voltage should also be equal to the mean x and y-plate potentials. If use is made of the full deflection capabilities of the tube, the deflection plates will intercept part of the electron beam near the edge of the scan. Therefore a low impedance deflection plate drive is necessary. (See also ELECTRODE CURRENTS AND CIRCUIT IMPEDANCES on the next page.)

CRTs GENERAL

Raster distortion and its determination

Limits of raster distortion are given for most tubes.

A graticule, consisting of concentric rectangles is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

Measuring procedure:

- Shift the x-trace to the centre of the graticule.
- Align horizontal centre line of graticule with the centre line of the x-trace.
- Shift x-trace vertically between upper and lower horizontal lines of graticule; the centre of the x-trace now will not fall outside the area bounded by the horizontal graticule lines.
- Without moving the graticule, switch to a vertical trace and shift this trace horizontally (left and
 right) between the pairs of vertical lines of the graticule; the centre of the y-trace will not fall
 outside the area bounded by the vertical graticule lines.
- Focus and astigmatism will be adjusted for optimum performance.
- Pattern geometry correction will be adjusted for optimum performance in the sense of minimizing simultaneously the deviation of the centre of x and y-trace respectively.

Linearity

The linearity is defined as the sensitivity at a deflection of 75% of the useful scan with respect to deviations from the sensitivity at a deflection of 25% of the useful scan. These sensitivities will not differ by more than the indicated value.

Post deflection shield voltage

In order to optimize contrast in mesh tubes a fixed negative voltage with respect to the geometry control voltage should be applied. The range is given in the data.

Final accelerator voltage

Tubes with PDA are designed for a given final accelerator voltage to first accelerator voltage ratio. Operation at higher or lower ratios may result in changes in deflection uniformity, pattern distortion and useful scan.

High tension supply

In order to avoid damage to the screen it is important that a deflection voltage, e.g. the time base voltage, is applied prior to the high tension.

ELECTRODE CURRENTS AND CIRCUIT IMPEDANCES

In each electrode currents caused by interception of a part of the electron beam, leakage or secondary emission, may occur in both directions. For oscilloscope tubes currents up to 10 μ A can be expected in the focusing electrode and the deflection plates. In addition, if use is made of the full deflection capabilities, each deflection plate may intercept up to 50% of the beam current.

For oscilloscope tubes with beam-limiting apertures, the grid 2 and/or grid 4 circuit impedance should be less than 10 $k\Omega$.

For all tubes the control grid circuit resistance should be less than 1 M Ω .

CAPACITANCES

Unless otherwise stated the values given are nominal values measured at the contacts of a cold tube. The contacts and measuring leads are screened.

LINE WIDTH

The line width is measured with the shrinking raster method. Focusing and astigmatism voltages should be adjusted to minimize the horizontal and vertical trace widths simultaneously at the screen centre. The raster width should be reduced until the line structure is just discernible. This raster width, divided by the number of lines in the display, is the measure of the line width.

USEFUL SCREEN AREA

This is the area on the inner side of the faceplate which is provided with phosphor; it may remain uncovered and thus visible from the outside.

USEFUL SCAN AREA

This is the part of the useful screen area in which the specified performance applies.

LUMINESCENT SCREEN

To prevent permanent screen damage, care should be taken:

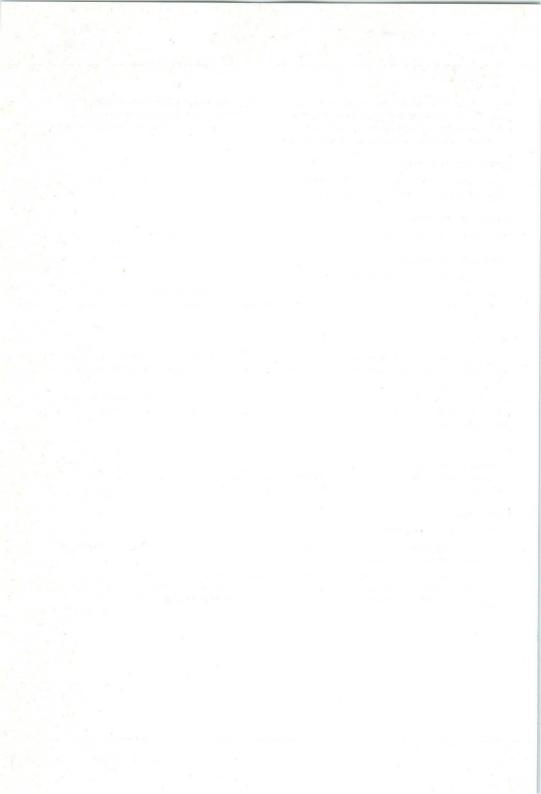
- not to operate the tube with a stationary picture at high beam currents for extended periods;
- not to operate the tube with a stationary or slowly moving spot except at extremely low beam currents.

MOUNTING

Unless otherwise stated the tubes can be mounted in any position. However, a tube should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube.

The tube socket should not be rigidly mounted but should have flexible leads and be allowed to move freely. The mass of the mating socket with circuitry should not be more than 100 g; maximum permissible torque is 40 mNm.

Shielding


Oscilloscope tubes need a magnetic shielding for proper operation. Especially for types with an internal permanent magnetic lens system (IMC), a magnetic induction at the tube neck greater than 0,02 T (200 gauss), which corresponds to a magnetic field strength of 1,6 \times 10⁴ A/m, must be avoided.

HANDLING

Handling (or destroying) tubes should be done by qualified personnel.

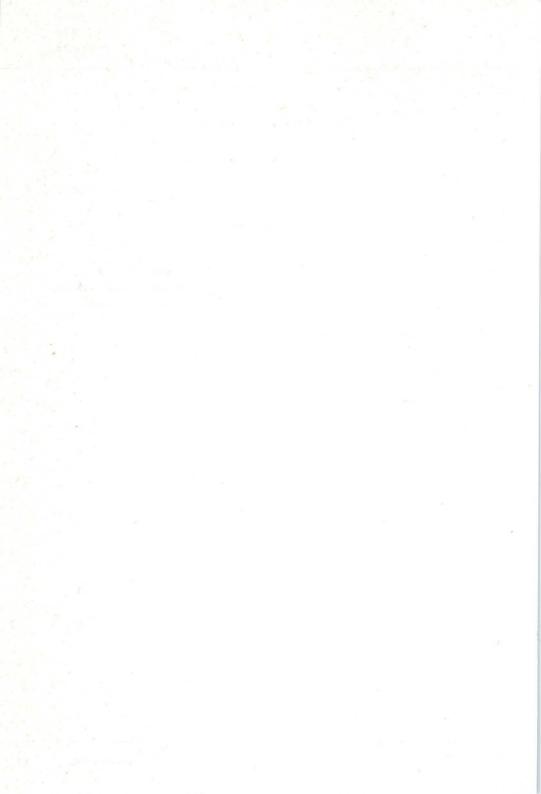
The tubes are evacuated, which implies that mechanical damage must be avoided; care should be taken not to scratch or knock any part of the tube.

Remember when replacing or servicing a tube that a residual electrical charge may be carried by the final accelerator contact and also the external coating if not earthed. Before removing the tube from the equipment, earth the external coating and short the final accelerator contact to the coating.

PHOTOMETRIC UNITS

S.I. photometric units

quantity	symbol	S.I. unit	remarks			
luminous intensity	ı	cd (candela)				
luminous flux	φ	Im (lumen)				
quantity of light	Q	lm ·s				
luminance	L	cd/m ²	1 cd/m ² = 1 nit			
luminous exitance	M	lm/m²	formerly luminous emittance			
illuminance	E	lx (lux)	formerly illumination			


Other photometric units; conversion factors

1 stilb = 1 cd/cm² =
$$10^4$$
 cd/m² = 4π lumen/cm²

1 lambert
$$=\frac{1}{\pi} \text{cd/cm}^2 = \frac{10^4}{\pi} \text{cd/m}^2 = 4 \text{ lumen/cm}^2$$

1 foot lambert =
$$\frac{1}{\pi}$$
 cd/ft² = 3,426 cd/m²

1 foot candle = 10,764 lux

TYPE DESIGNATION

Pro Electron type designation code

The CRT type number begins with a single letter followed by two sets of digits, and ends with one or two letters.

The first letter indicates the prime application of the tube:

D: Oscilloscope tube, single trace

E: Oscilloscope tube, multiple trace

F: Radar display tube, direct view

L: Storage display tube

M: TV display tube for professional application, direct view

P: Display tube for professional application, projection

Q: Flying spot scanner tube

The first group of digits indicates the diameter or diagonal of the screen in cm.

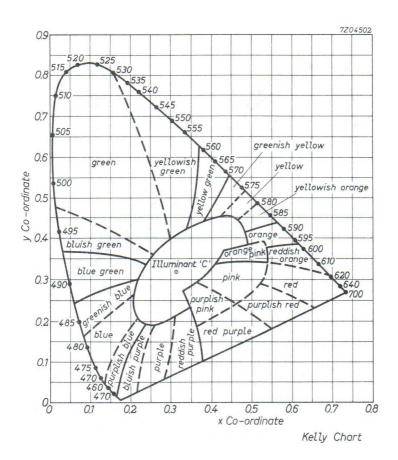
The second group of digits is a two or three-figure serial number indicating a particular design or development.

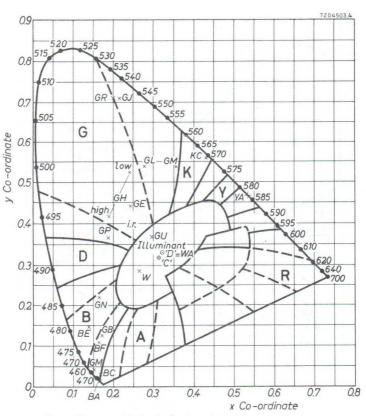
The final group of letters indicates the properties of the phosphor screen (see section "Screen types").

For CRTs with internal graticule a suffix consisting of two or more figures follows the type designation, separated from it by an oblique stroke.

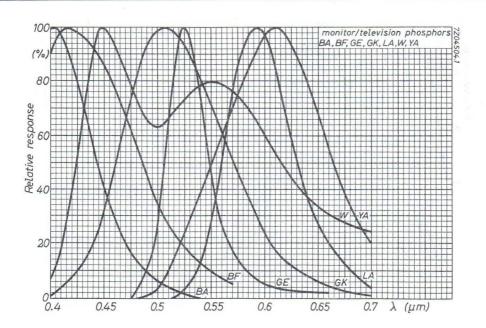
Example:

SCREEN TYPES

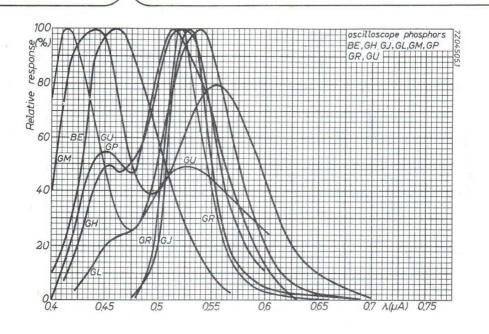

new old system system		fluorescent colour	phosphorescent colour	persistence	equivalent JEDEC designation	
ВА	C purplish-blue		_	very short		
BE	В	blue	blue	medium short	P11	
BF	U	purplish-blue	_	medium short	-	
GH	Н	green	green	medium short	P31	
GJ	G	yellowish-green	yellowish-green	medium	P1	
GK	G	yellowish-green	yellowish-green	medium	-	
GM	P	purplish-blue	yellowish-green	long	P7	
GP	_	bluish-green	green	medium short	P2	
GR	_	green	green	long	P39	
GU	_	white	white	very short		
GY	-	green	green	medium	P43	
KC	_	yellow-green	yellow-green	medium short	_	
W	W	white	_	_	P4	
WA	-	white	_	_		
WE	_	white	white	medium short	P45	
X	X	tri-colour screen		_	-	
YA	Y	yellowish-orange	yellowish-orange	medium	_	

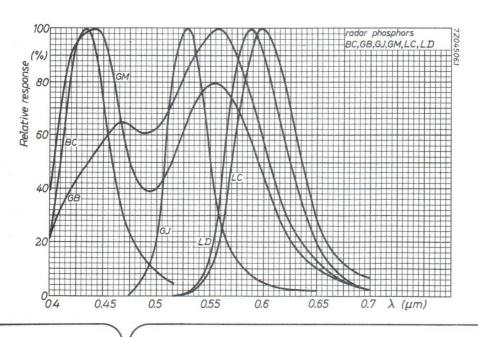

The phosphor information given in this section is based in general upon the original phosphor registration (TEPAC and/or PRO ELECTRON) and can be used as a selection guide. Slight differences may occur between the actual phosphor properties and the registered data.

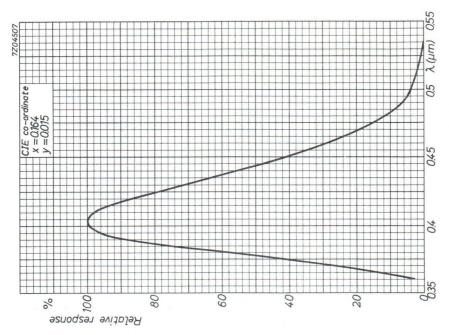
SCREEN TYPES

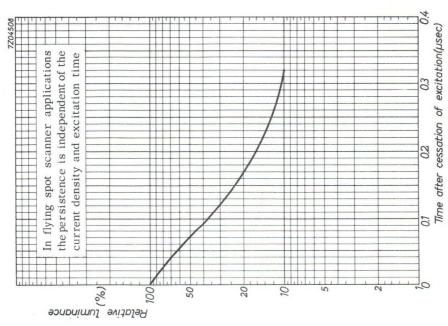

Survey of applications and persistence of screens

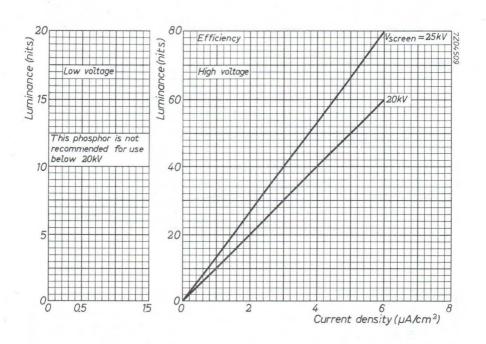
application	phosphor	conditions (display: spot)					persistence			
		screen voltage	screen		pulse width	repetition time	relative level of luminance		remark	
			(peak value)	10%				1%		
	BE	4 kV	20	μΑ	2 μs	10 ms	34	μs	220 μs	
	GH	4 kV	20	μΑ	2 μs	10 ms	38	μs	250 μs	
oscilloscope tubes	C			24,	5 ms					
	GM	4 kV	2	μΑ	raster switched off after 5 s		0,4	4 s	3 s	yellow filter
4	GP	4 kV	2	μA	100 μs	single shot	100	μs		
	GY	4 kV	20	μΑ	2 μs	10 ms	1,!	5 ms	3 ms	
-,	GR									
	W	see relevant curves for persistence								
monitor tubes	WA									
1 100	WE									
	KC									
projection	rojection BF									
tubes	YA	YA see relevant curves for persistence								
flying-spot	ВА	see relevant curves for persistence								
scanner tubes	GU									

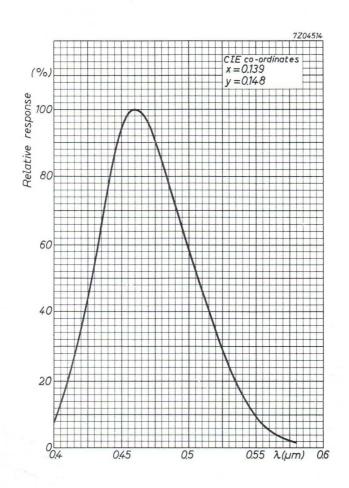


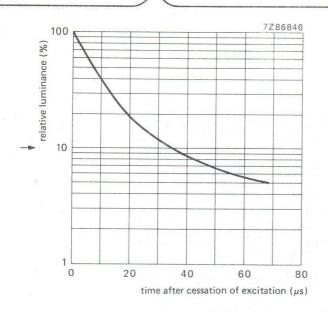


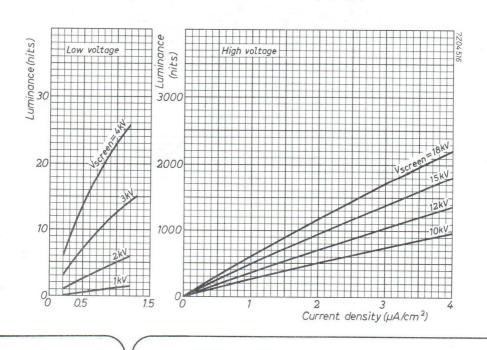

Co-ordinates of individual phosphors

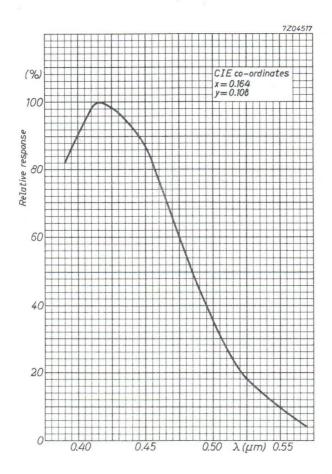


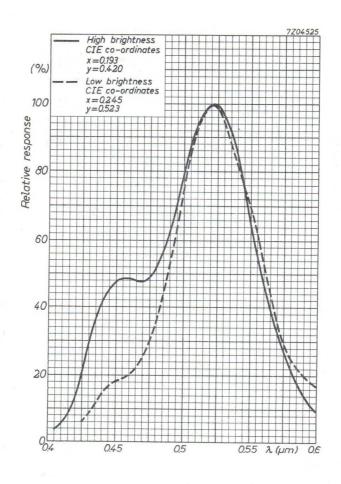

SCREEN TYPES



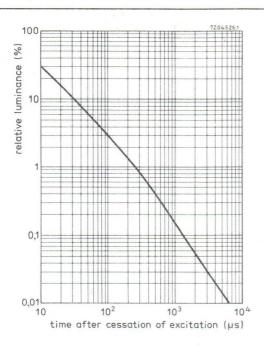


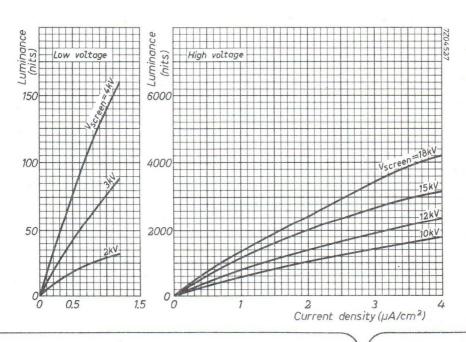


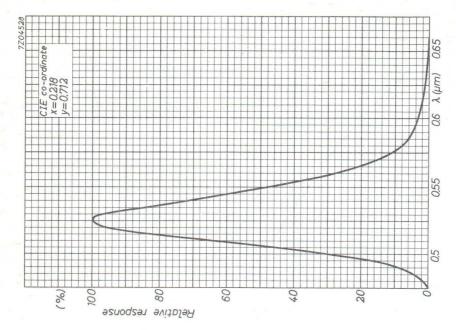


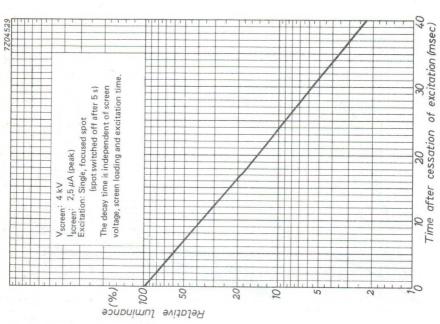


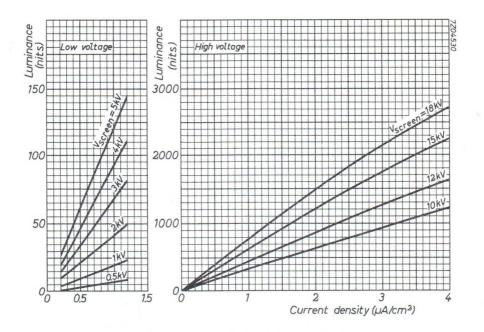
BE SCREEN

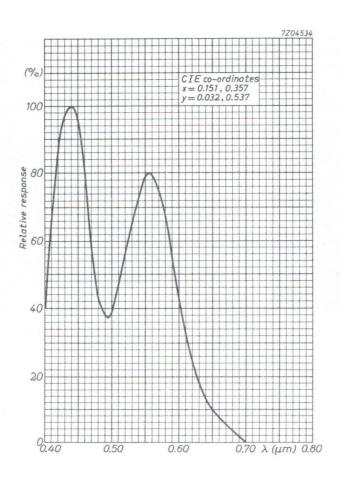


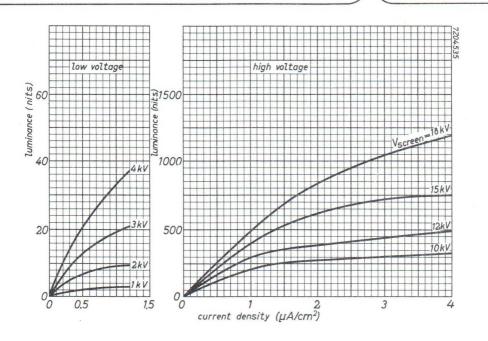


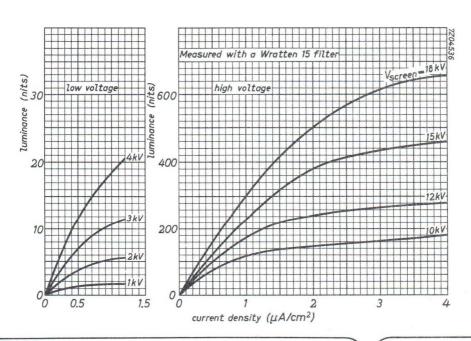

GH SCREEN

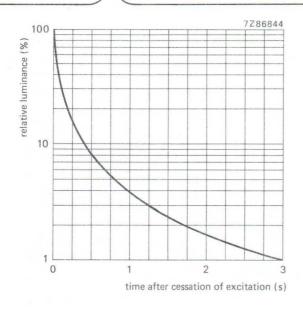



Screen voltage	4 k	V
Screen current	20 μ	Α
Pulse width	2 μ	S
Repetition time	10 m	15

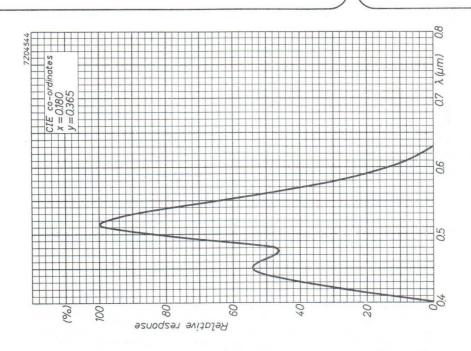

At lower screen voltage, lower screen loading or longer excitation time, the decay time will be longer.

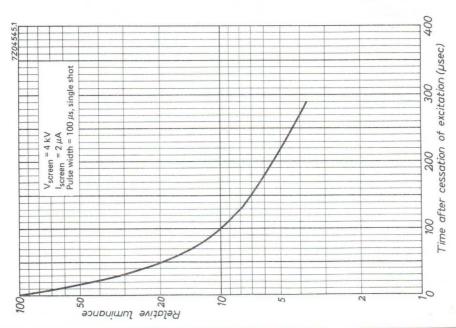


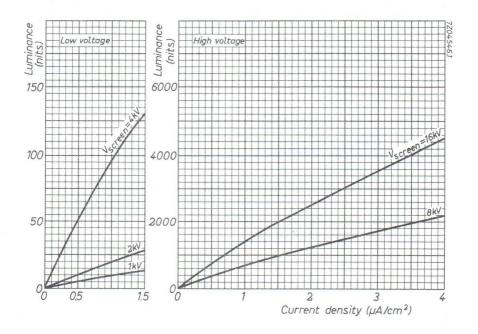


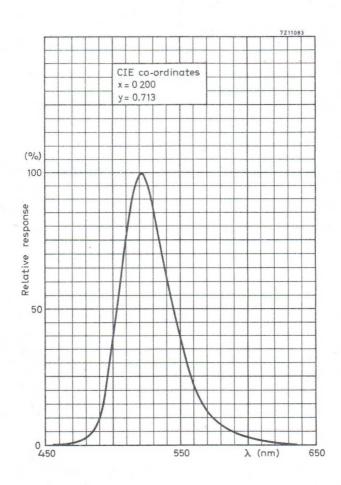


GM SCREEN

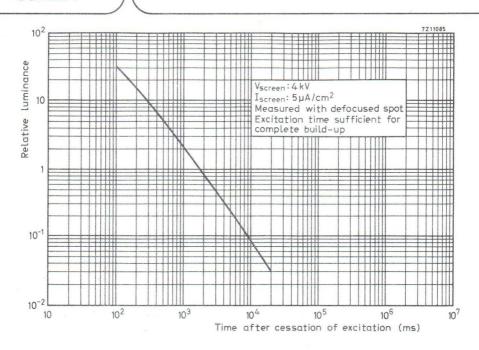


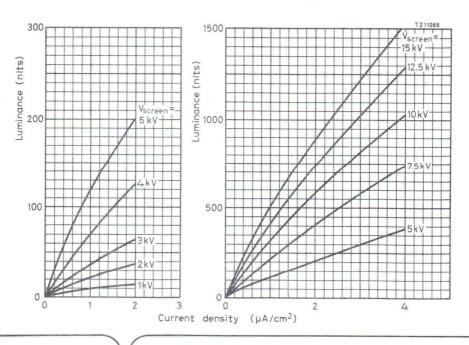


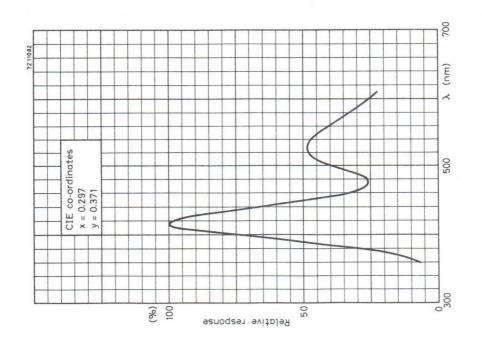

GM SCREEN

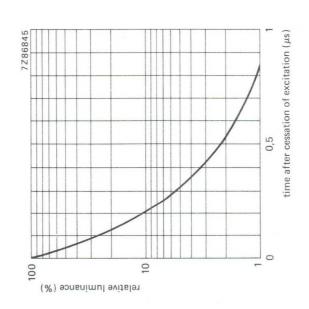


GP SCREEN

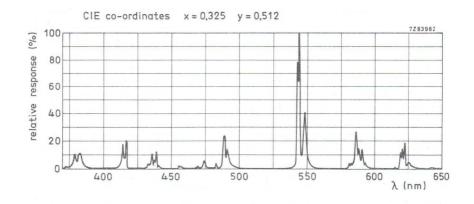


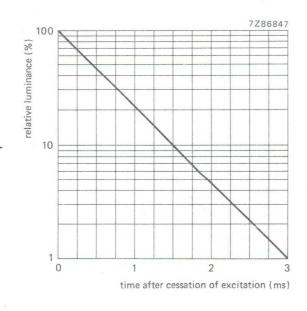


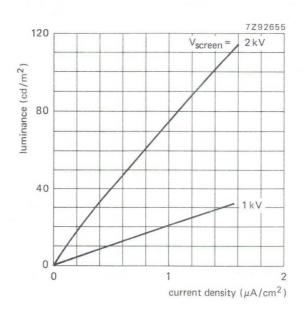


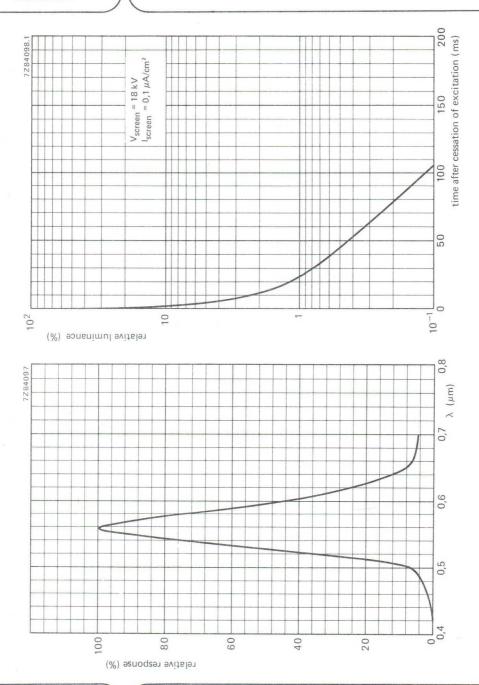


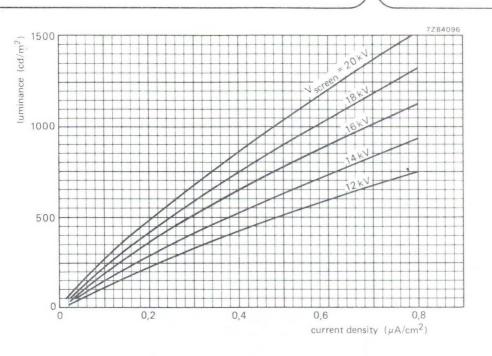
GR SCREEN

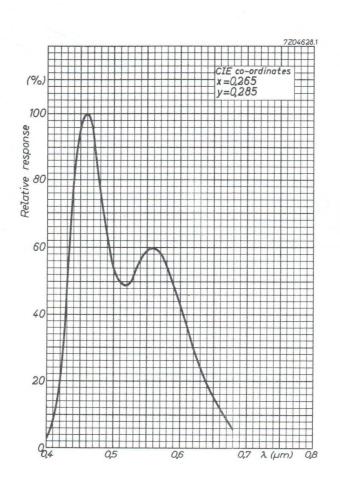


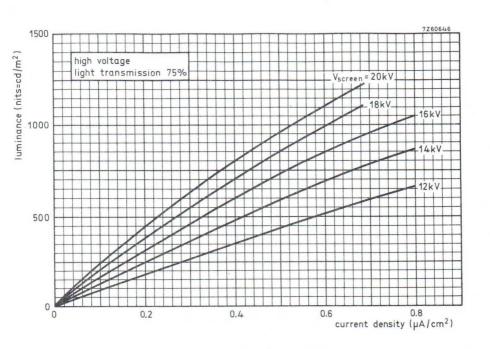


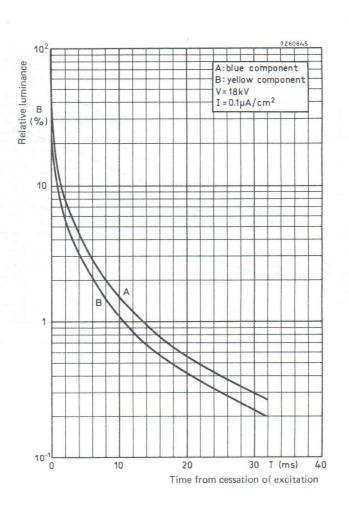


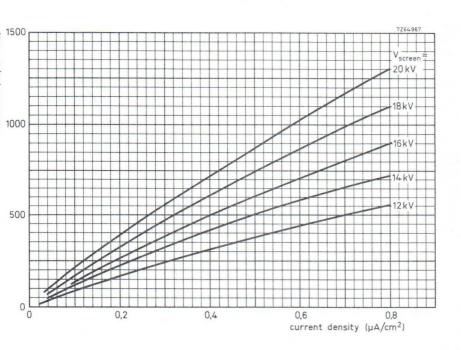

GY SCREEN

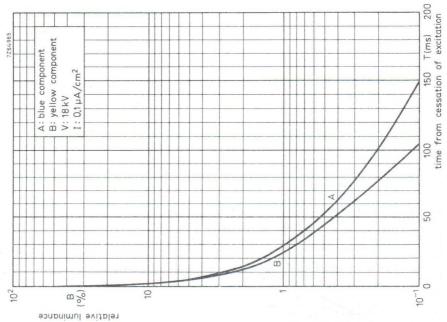


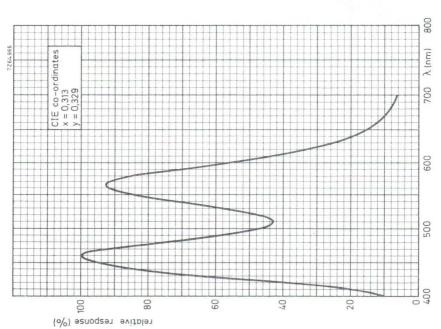


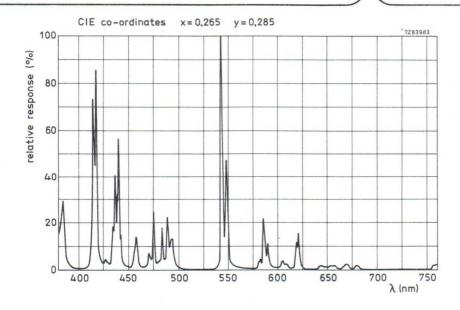

KC SCREEN

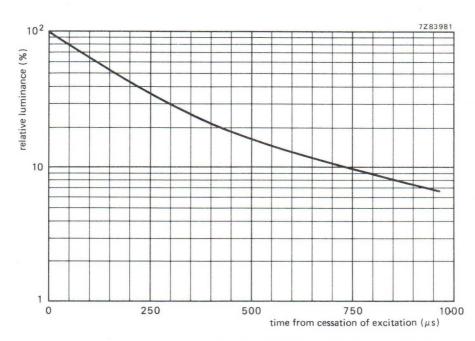



KC SCREEN

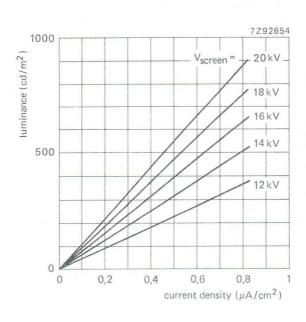


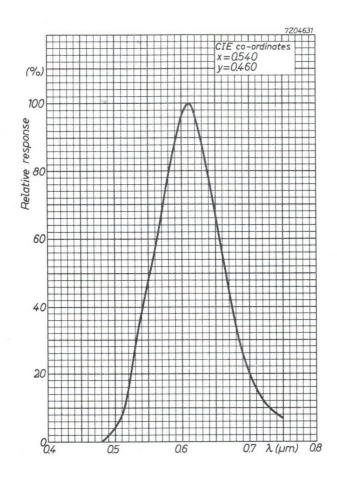






WA SCREEN





Measured with defocused spot; pulse duration: 5 ms, V_{screen} : 5 kV, I_{screen} = 5 μA .

WE SCREEN

INSTRUMENT TUBES

SURVEY OF INSTRUMENT TUBES

	monoaccelerator tubes	post-deflection accelerator tubes	large bandwidth tubes	direct-view storage tubes
PREFERR	ED TYPES: recommended	for new design		1
300	D7-221GY D7-222GY D10-180GY D10-181GY D12-130GY/119 D14-361 D14-361/93 D14-362 D14-362/93	D14-261GH D14-262GH D14-370GH/93 D14-380GH/93		L14-131GH/58 L14-140GH/98 L14-150GH/98
MAINTEN	ANCE TYPES: no longer r	ecommended for equip	ment production	
3.	D7-190 D7-191 D10-160 D10-161 D13-480 D13-481 D14-251GH D14-252GH D14-360 D14-360/93	D12-120GH/115 D14-120GH D14-121GH D14-292GH D14-302GH/93 D18-120 E14-100GH	D13-500GH/01	L14-111GH/55
OBSOLES	CENT TYPES: available un	til present stocks are ex	khausted.	1
	DG7-5 DG7-6 DG7-31 DG7-32 DH3-91	D . 7-11 D10-170 D13-27 D14-162GH/09 E10-12 E10-130	D14-240GH/37	

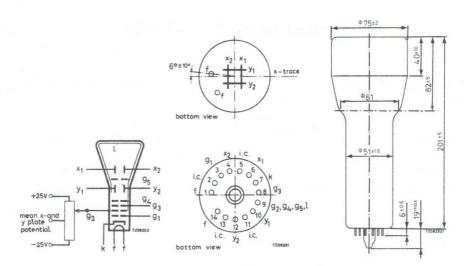
INSTRUMENT CATHODE-RAY TUBE

7 cm diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and monitoring devices.

QUICK REFERENCE DATA			
Accelerator voltage	Vg2,g4,g5,l	1000	V
Display area		60 x 50	mm^2
Deflection coefficient, horizontal	M_X	29	V/cm
vertical	M_y	11.5	V/cm

SCREEN

	colour	persistence
D7-190GH	green	medium short
D7-190GM	yellowish green	long


Useful screen diameter	min.	64	mm
Useful scan			
horizontal	min.	60	mm
vertical	min.	50	mm

The useful scan may be shifted vertically to a maximum of 4mm with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage	V_{f}	6.3	V
Heater current	${f I_f}$	300	mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length	max.	225	mm
Face diameter	max.	77	mm

Base 14 pin all glass

Net weight	approx.	260	
Accessories			

Accessories

Socket (supplied with tube)	type	55566
Mu-metal shield	type	55534

1000			200	-
CA	DA	CIT	AN	CES

x ₁ to all other elements except x ₂	$C_{x1}(x2)$ 4	pF
x_2 to all other elements except x_1	$C_{x2(x1)}$ 4	pF
y_1 to all other elements except y_2	$C_{y1(y2)}$ 3.5	pF
\mathbf{y}_2 to all other elements except \mathbf{y}_1	$C_{y2(y1)}$ 3	pF
x_1 to x_2	C_{X1X2} 1.6	pF
y_1 to y_2	C_{y1y2} 1.1	pF
Control grid to all other elements	C_{g1} 5.5	pF
Cathode to all other elements	Ck 4.0	pF

FOCUSING

electrostatic

DEFLECTION 3) double electrostatic

x plates symmetrical

y plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

 $90 + 1^{\circ}$

LINE WIDTH 3)

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I/ = 10 μ A.1)

Line width 1.w. 0.28 mm

January 1969

¹⁾ As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:

a) under typical operating conditions, apply a small raster display (no overscan), adjust $\rm V_{g1}$ for a beam current of approx. 10 $\rm \mu A$ and adjust $\rm V_{g3}$ and $\rm V_{g2,g4,g5,\ell}$ for optimum spot quality at the centre of the screen.

b) under these conditions, but no raster, the deflection plate voltages should be changed to

 $[\]rm V_{y1}$ = $\rm V_{y2}$ = 1000 V; $\rm V_{x1}$ = 300 V; $\rm V_{x2}$ = 700 V, thus directing the total beam current to x2.

Measure the current on x_2 and adjust ${\rm V}_{g1}$ for ${\rm I}_{x2}$ = $10\,\mu{\rm A}$ (being the beam current If)

c) set again for the conditions under a), without touching the $\rm V_{g1}$ control. Now a raster display with a true 10 $\rm \mu A$ screen current is achieved.

d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.

³) See next page.

	TYPICAL OPERATING CONDITIONS 3)					
	Accelerator voltage	Vg2,g4,g5,l		1000	V	
	Astigmatism control voltage	ΔV _{g2,g4,g5,ℓ}		± 25	V 1)	
	Focusing electrode voltage	V _g 3	100 t	o 180	V	
	Control grid voltage for visual extinction of focused spot	V _{g1}	max.	-35	V	
	Grid drive for 10 μ A screen current	3.	approx.	10	\vee	
	Deflection coefficient, horizontal	M_{X}	max.	-	V/cm V/cm	
	vertical	M_{y}	max.	,	V/cm V/cm	
	Deviation of linearity of deflection		max.	1	% 2)	
Geometry distortion			see note	4		
	Useful scan, horizontal		min.	60	mm	
	vertical		min.	50	mm	
	LIMITING VALUES (Absolute max. rating system)					
	Accelerator	$V_{g2,g4,g5,\ell}$	max. min.	2200 900		
	Focusing electrode voltage	V_{g3}	max.	2200	V	
	Control grid voltage, negative	$-v_{g1}$	max. min.	200	V	
	Cathode to heater voltage	V _{kf}	max.	125 125		

20 V

3 mW/cm²

 $1 M\Omega$

max.

max.

max.

Wo

R_a1

2) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

3) The mean x and certainly the mean y plate potential should be equal to $V_{q2,q4,q5,\ell}$ with astigmatism adjustment set to zero.

4) A graticule, consisting of concentric rectangles of 40 mm x 50 mm and 39,2 mm x 49 mm is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.

Grid drive, average

Screen dissipation

Control grid circuit resistance

¹⁾ All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and certainly the mean y plate potential was made equal to $V_{q2,q4,q5,\ell}$ with zero astigmatism correction.

INSTRUMENT CATHODE-RAY TUBE

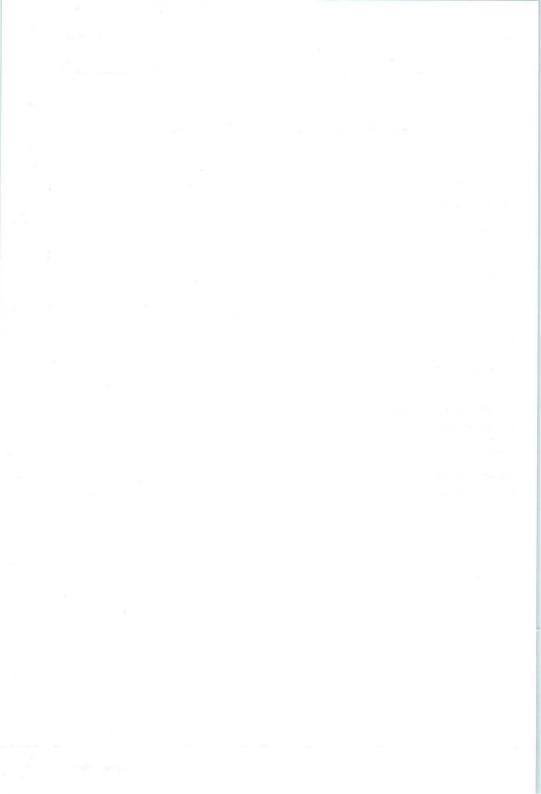
7 cm diameter flat-faced monoaccelerator oscilloscope tube with low heater consumption.

QUICK REFERENCE DATA

g4, g5 (l) 1000	V
	mm ²
29	V/cm
11,5	V/cm

The D7-191 is equivalent to the type D7-190.. except for the following.

HEATING


Indirect by a.c. or d.c.; parallel supply.

Heater voltage $$V_f$$ 6,3 $$V_f$$ Heater current $$I_f$$ 95 \$mA\$

LIMITING VALUES (Absolute maximum rating system)

CAPACITANCES

Cathode to all other elements C_k 2,3 pF

7 cm diagonal, rectangular flat faced mono accelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and monitors. This tube features a low heater power consumption.

QUICK REFERENCE DATA

Accelerator voltage	V _{g2} , g4, g5(ℓ)	1000	V	
Display area		60 mm x 36	mm	
Deflection coefficient horizontal vertical	$^{ m M_{ m X}}_{ m Y}$,	V/cm V/cm	
The D7–221GY is equivalent to the type	D7-222GY except for the following.			4
HEATING				
Indirect by a.c. or d.c. *				
Heater voltage	\vee_{f}	6,3	V	
Heater current	If	0,1	Α	
LIMITING VALUES (Absolute maximum	rating system)			
Cathode to heater voltage				

CAPACITANCES

positive

negative

Cathode to all other elements C_k 3 pF

max. 100 V

max. 15 V

^{*} Not to be connected in series with other tubes.

V (58-10

§

Part

7 cm diagonal, rectangular flat faced mono accelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and monitors. This tube features a 1,5 W cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Accelerator voltage	V _{g2} , g4, g5 (ℓ)	1000	V
Display area		60 mm x 36	mm
Deflection coefficient horizontal vertical	M _X		V/cm V/cm

OPTICAL DATA

Screen			
phosphor type persistence	GY, co mediu	olour green m	4
Useful screen dimensions	≥ 60 m	nm x 36 mm	
Useful scan			
horizontal	\geqslant	60 mm	
vertical	\geqslant	36 mm	
Spot eccentricity in horizontal			
and vertical directions	<	5 mm	

HEATING

Indirect by a.c. or d.c.* Heater voltage V $_{\rm f}$ 6,3 V Heater current I $_{\rm f}$ 0.24 A

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass approx. 350 g

Base 12-pin all glass; JEDEC B12-246

^{*} Not to be connected in series with other tubes.

Dimensions and connections

See also outline drawing

Overall length 225 mm 72,5 x 49 mm

Faceplate dimensions

Accessories

Socket, supplied with tube type 55589/55594

Mu-metal shield type 55535

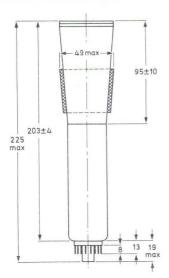
FOCUSING electrostatic

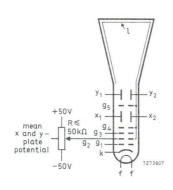
DEFLECTION double electrostatic

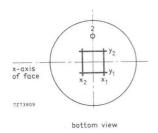
x-plates symmetrical y-plates symmetrical

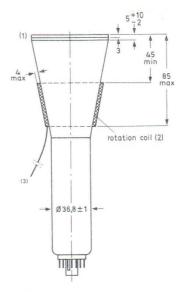
Angle between x and y-traces 90 ± 10

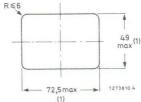
≤30 * Angle between x-trace and horizontal axis of the face

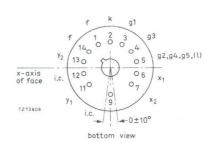

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.


CAPACITANCES


x ₁ to all other elements except x ₂	$C_{\times 1(\times 2)}$	3	pF
x2 to all other elements except x1	$C_{\times 2(\times 1)}$	3	pF
y ₁ to all other elements except y ₂	Cy1(y2)	4	pF
y ₂ to all other elements except y ₁	$C_{y2(y1)}$	4	pF
x ₁ to x ₂	C _{x1x2}	1,5	pF
y ₁ to y ₂	Cy1y2	1,8	pF
Control grid to all other elements	C_{g1}	5,5	pF
Cathode to all other elements	c_k	3	pF


^{*} The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 250 Ω . Under typical operating conditions, a maximum of 10 ampere-turns are required for the maximum rotation of 3°. This means the required current is 10 mA maximum at a required voltage of 2,5 V maximum.


DIMENSIONS AND CONNECTIONS



- (1) The bulge at the frit seal does not exceed the maximum dimensions.
- (2) The coil is fixed to the envelope by means of adhesive tape.
- (3) The length of the connecting leads of the rotation coil is min. 350 mm.

TYPICAL OPERATION

Conditions (note 1)					
Accelerator voltage	Vg2, g4, g5(l)		1000	V	
Astigmatism control voltage	ΔV_{g2} , g4, g5(ℓ)		±50	\vee	(note 2)
Focusing electrode voltage	V _{g3}	100	to 180	V	
Cut-off voltage for visual	0				
extinction of focused spot	$-V_{g1}$	1	1 to 35	V	
Performance					
Useful scan					
horizontal		>	60	mm	
vertical		>	36	mm	
Deflection coefficient					
horizontal	M _X		,	V/cm	
		<		V/cm	
vertical	My			V/cm	
		<	22	V/cm	
Line width	I.w.		0,28	mm	(note 3)
Deviation of linearity of deflection		<	2	%	(note 4)
Grid drive for 10 μA screen current	V_d	\approx	10	V	
Geometry distortion	see note 5				

NOTES

- 1. The mean x-plate potential and the mean y-plate potential should be equal to $V_{g2,\ g4,\ g5(\ell)}$ (with astigmatism control voltage set to zero).
- When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
- 3. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I $_{\rm F}$ = 10 μ A.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows.

- a) Under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μ A and adjust V_{g3} and $V_{g2,~g4,~g5(\ell)}$ for optimum spot quality at the centre of the screen.
- b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{X1} = V_{X2} = 1000 \text{ V}; V_{y1} = 300 \text{ V}; V_{y2} = 700 \text{ V},$ thus directing the total beam current to v_2 . Measure the current on v_2 and adjust v_{g1} for $v_{g2} = 10 \, \mu\text{A}$.
- c) Set again for the conditions under a), without touching the V_{g1} control. The screen current of the resulting raster display is now 10 μ A.
- d) Focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5. A graticule, consisting of concentric rectangles of 57,0 mm x 33,0 mm and 56 mm x 31,6 mm is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.

LIMITING VALUES (Absolute maximum rating system)

Accelerator voltage	Vg2, g4, g5(ℓ)	max.	2200	V
Focusing electrode voltage	V_{g3}	max.	2200	V
Control grid voltage	$-V_{g1}$	max. min.	200	V
Cathode to heater voltage positive negative	V _{kf}	max. max.	125 125	-
Grid drive, averaged over 1 ms	V_d	max.	20	V
Screen dissipation	Wę	max.	3	mW/cm ²
Control grid circuit resistance	R _{g1}	max.	1	ΩM

 $10~{\rm cm}$ diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK REFERENCE DATA				
Accelerator voltage	$V_{g_2,g_4,g_5(\ell)}$	1500	V	
Display area		80 x 60	mm^2	
Deflection coefficient, horizontal	M_X	32	V/cm	
vertical	$M_{ m V}$	13.7	V/cm	

SCREEN

	colour	persistence
D10-160GH	green	medium short
D10-160GM	yellowish green	long

Useful screen diameter

min. 85 mm

Useful scan

horizontal

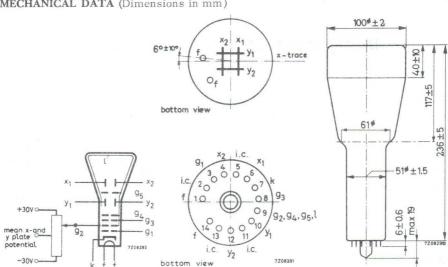
min. 80 mm

vertical

min. 60 mm

The useful scan may be shifted vertically to a max, of $5\,\mathrm{mm}$ with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply


Heater voltage

Vf 6.3 V

Heater current

If 300 mA

MECHANICAL DATA (Dimensions in mm)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length	max.	260	mm
Face diameter	max.	102	mm

Base 14 pin all glass

Net weight approx. 400 g

Accessories

Socket (supplied with tube) 55566 type Mu metal shield type 55547

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{\times 1(\times 2)}$	4 pF
x_2 to all other elements except x_1	$C_{\times 2(\times 1)}$	4 pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	3,5 pF
y ₂ to all other elements except y ₁	$C_{y2(y1)}$	3 pF
x ₁ to x ₂	C_{x1x2}	1,6 pF
y ₁ to y ₂	Cy1y2	1,1 pF
Control grid to all other elements	C _{g1}	5,5 pF
Cathode to all other elements	C_k	4 pF

FOCUSING

electrostatic

DEFLECTION (note 1) double electrostatic

x plates symmetrical y plates symmetrical)

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

90 ± 10

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I χ = 10 μ A. (note 2)

Line width

I.w.

0,27 mm

Notes

- 1. The mean x and certainly the mean y plate potentials should be equal to $V_{g2,~g4,~g5,~\ell}$ with astigmatism adjustment set to zero.
- As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:
 - a) under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μ A and adjust V_{g3} and V_{g2} , g4, g5, ℓ for optimum spot quality at the centre of the screen.
 - b) under these conditions, but no raster, the deflection plate voltages should be changed to: $V_{\gamma1} = V_{\gamma2} = 1500 \text{ V}; V_{x1} = 800 \text{ V}; V_{x2} = 1200 \text{ V}, \text{ thus directing the total beam current to } x_2.$ Measure the current on x_2 and adjust V_{g1} for $I_{x2} = 10 \ \mu\text{A}$ (being the beam current I_{χ}).
 - c) set again for the conditions under a), without touching the V_{g1} control. Now a raster display with a true 10 μ A screen current is achieved.
 - d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.

TYPICAL OPERATING CONDITIONS 3)

Accelerator voltage	$V_{g2,g4,g5,l}$	1500	V
Astigmatism control voltage	$\Delta V_{g2,g4,g5,l}$	± 30	V^{1})
Focusing electrode voltage	Vg3	140 to 275	V
Control grid voltage for visual			
extinction of focused spot	v_{g1}	$\max50$	
Grid drive for $10~\mu\mathrm{A}$ screen current		approx. 10	V
Deflection coefficient, horizontal	M_X	32 max. 34	V/cm V/cm
vertical	M_{y}	13.7 max. 14.5	V/cm V/cm
Deviation of linearity of			
deflection		max. 1	% ²)
Geometry distortion		see note 4	
Useful scan, horizontal		min. 80	mm
vertical		min. 60	mm
LIMITING VALUES (Absolute max. rat	ing system)		
Accelerator voltage	$V_{g2,g4,g5,l}$	max. 2200	
	g2, g4, g3,x	min. 1350	
Focusing electrode voltage	Vg3	max. 2200	
Control grid voltage, negative	-Vg1	max. 200	
		min. 0	V
Cathode to heater voltage	V _{kf} -V _{kf}	max. 125 max. 125	
Grid drive, average	v ki	max. 20	
Screen dissipation	W Q	max. 3	,
300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Barrell Market
Control grid circuit resistance	R_{g1}	max. 1	$M\Omega$

¹⁾ All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x plate and centainly the mean y plate potential was made equal to $V_{g_2,g_4,g_5,\ell}$ with zero astigmatism correction.

²⁾ The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

³⁾ The mean x and certainly the mean y plate potentials should be equal to $V_{g2,g4,g5,\ell}$, with astigmatism adjustment set to zero.

⁴⁾ A graticule, consisting of concentric rectangles of 50 mm x 60 mm and 49 mm x 58.6 mm is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles.

10 cm diameter flat-faced monoaccelerator oscilloscope tube with low heater consumption.

QUICK REFERENCE DATA

Accelerator voltage	Vg2, g4, g5 (l)	1500	V
Display area	3 7 3 7 3	80 x 60	mm ²
Deflection coefficient			
horizontal	M×	32	V/cm
vertical	My	13,7	V/cm

The D10-161.. is equivalent to the type D10-160.. except for the following.

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage	V _f	6,3 V
Heater current	If	95 mA

LIMITING VALUES (Absolute maximum rating system)

Cathode to heater voltage		
positive	V + k/f - max.	100 V
negative	V - k/f + max.	15 V

CAPACITANCES

Cathode to all other elements	Ck	2,3 pF
-------------------------------	----	--------

 $10~\rm cm$ diameter flat faced oscilloscope tube with mesh, designed for compact, transistorized oscilloscopes of $10~\rm MHz$ to $30~\rm MHz$ bandwidth.

QUICK REFERENCE DATA			
Final accelerator voltage	V _{g7(l)}	6	kV
Display area		80 x 60	mm^2
Deflection coefficient, horizontal	M_{X}	13	V/cm
vertical	M_{y}	3,5	V/cm

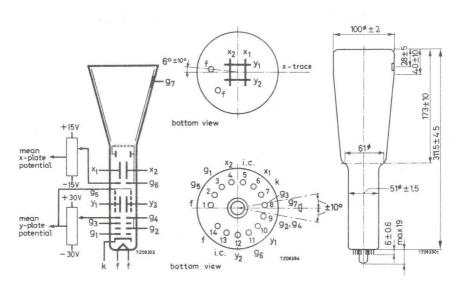
SCREEN

Useful screen diameter

	colour	persistence
D10-170GH	green	medium short

min.

85 mm


Useful scan at $V_{g7(\ell)}/V_{g2}$, $g_4 = 6$			
horizontal	min.	80	mm
vertical	min.	60	mm
The useful scan may be found shifted vertically to a max. of 5 mg geometric centre of the faceplate.	m with re	spect	to the

HEATING: Indirect by a.c. or d.c.; parallel supply

Heater voltage	V_{f}	6, 3	V
Heater current	I_f	300	mA

MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

(Overall length	(socket included)	max.	335	mm

Face diameter	max.	102	mm
---------------	------	-----	----

Net weight	approx.	500	g
	1 1	000	0

Dag-	1.4 11 1	

Dase	14 pin an giass
CONTRACTOR OF THE PARTY OF THE	

Accessories

Socket (supplied with tube)	type	55566
Final accelerator contact connector	type	55563A
Mu-metal shield	type	55548

CAPACITANCES

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x_1(x_2)}$	7	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x_2(x_1)}$	7	pF
\mathbf{y}_1 to all other elements except \mathbf{y}_2	$C_{y_1(y_2)}$	5	pF
y_2 to all other elements except y_1	$^{\mathrm{C}}_{\mathrm{y2}(\mathrm{y1})}$	5	pF
x_1 to x_2	$C_{x_1x_2}$	2.5	pF
y ₁ to y ₂	$c_{y_1y_2}$	1.5	pF
Control grid to all other elements	c_{g_1}	6	17
Cathode to all other elements	C_k	<u></u>	

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates

symmetrical

v plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

90 ± 1°

LINE WIDTH

Measured with the shrinking raster method over the whole screen area under typical operating conditions, adjusted for optimum spot size at a beam current If = 10 μ A.

Line width

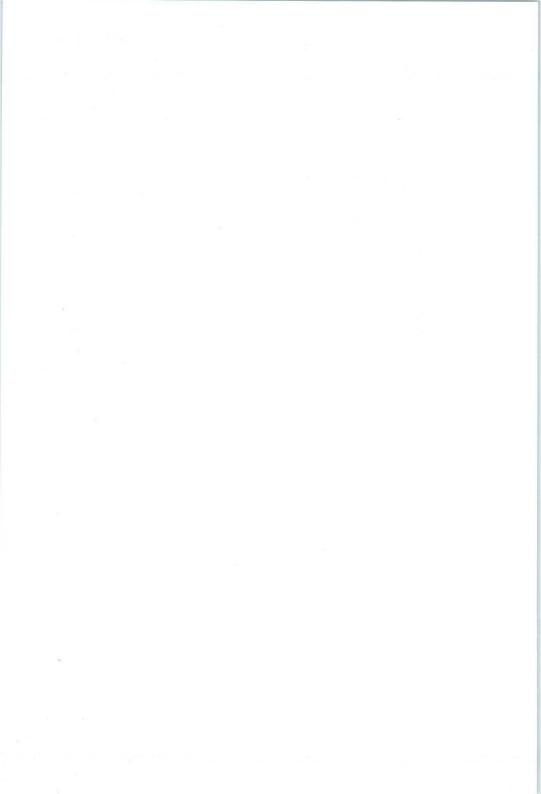
1.w. 0.42 mm

TYPICAL OPERATING CONDITIONS

Final accelerate Interplate shield Geometry cont	ld voltage	$V_{g_7(\ell)}$ V_{g_6} ΔV_{g_6}	6000 1000 ± 15	V V V 1)
	e shield voltage	V_{g_5}	1000	V^{2}
Focusing elect:	rode voltage	$v_{g_3}^{\text{vg}_5}$	170 to 230	V
First accelerat	tor voltage	$v_{g_2,g_4}^{s_3}$	1000	V
Astigmatism co	ontrol voltage	$\Delta V_{g_2,g_4}$	± 30	V 3)
Control grid vo extinction of	oltage for visual focused spot	v_{g_1}	-16 to -40	V
Deflection coef	ficient, horizontal	M_X	av. 13 max. 14	V/cm
	vertical	M_y	av. 3.5 max. 3.8	V/cm
Deviation of lin	nearity of deflection		max. 2	% 4)
Geometry disto	ortion		see note 5	
Useful scan, ho	orizontal		min. 80	mm
Ve	ertical		min. 60	mm

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$V_{g_7(\ell)}$	max.		V V
Interplate shield voltage and	0/12/	111111.	4000	V
geometry control electrode voltage	V_{g_6}	max.	2200	V
Deflection plate shield voltage	$V_{g_5}^{o_0}$	max.	2200	V
Focusing electrode voltage	V_{g_6} V_{g_5} V_{g_3}	max.	2200	V
First accelerator and astigmatism control electrode voltage	v_{g_2,g_4}	max.	2200	V V
Control of Joseph Control		max.	200	V
Control grid voltage, negative	$-v_{g_1}$	min.	0	V
Cathode to heater voltage	V_{kf}	max.	125	V
Cathode to heater voltage	-V _{kf}	max.	125	V
Voltage between astigmatism control electrode and any deflection plate	V _{g4} /x V _{g4} /y	max.	500	V
	$V_{g_4/y}$	max.	500	V
Grid drive, average	01	max.	20	V
Screen dissipation	We	max.	3	mW/cm ²
Ratio $V_{g_7}(\ell)/V_{g_2,g_4}$	$V_{g_7}(\ell)/V_{g_2,g_4}$	max.	6	
Control grid circuit resistance	R_{g1}	max.	1	$M\Omega$


For notes see next page.

Notes

 $^{1})$ This tube is designed for optimum performance when operating at a ratio $\rm V_{g_{7}}/\rm V_{g_{2}}, \rm g_{4}$ = 6 .

The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential). A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light.

- 2) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x- and y-plate potentials should be equal for optimum spot quality.
- 3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5) A graticule, consisting of concentric rectangles of 60 mm x 60 mm and 58.6 mm x 58.6 mm, is aligned with the electrical x-axis of the tube. With optimum correction potentials applied the edges of a raster lie between these rectangles.

- mono accelerator
- 10 cm diagonal rectangular flat face
- dynamic deflection defocusing correction
- internal magnetic correction for astigmatism and vertical eccentricity
- quick-heating cathode
- for portable oscilloscopes with up to 25 MHz bandwidth, and read-out devices

QUICK REFERENCE DATA

V _{g2(ℓ)}	2000	V
	70×56	mm
M _×	36	V/cm
My	23	V/cm
	M_X	70×56 M _x 36

OPTICAL DATA

Heater current

Screen

type persistence	GY, colour green medium		-
Useful screen area	≥	70 x 56 mm	
Useful scan area	\geqslant	70 x 56 mm	
Spot eccentricity in horizontal direction in vertical direction	≪	6 mm 3 mm	note 2, last page
HEATING			
Indirect by a.c. or d.c.*			
Heater voltage	Vf	6,3 V	

If

approx.

Heating time to attain 10% of the cathode current at equilibrium conditions

0.24 A

5 s

^{*} Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included)

Faceplate dimensions 82 ± 1 mm x 69 ± 1 mm

≤ 240 mm

double electrostatic

Net mass approx. 450 g

Base 12 pin, all glass, **JEDEC B12-246**

Mounting

The tube can be mounted in any position. It must not be supported by the base alone or near the base region and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket with solder tags type 55589/55594 Socket with printed-wiring pins type 55595

FOCUSING electrostatic

DEFLECTION

x-plates symmetrical y-plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the

electron beam, hence a low impedance deflection plate drive is desirable.

DYNAMIC DEFLECTION DEFOCUSING CORRECTION

The tube has a special electrode, positioned between the x and y-plates, for dynamic correction of deflection defocusing, to improve the uniformity of the extremely good line width up to the screen edges. If use is made of this dynamic correction, a negative voltage proportional to, and approx. 50% of, the negative horizontal deflection plate voltage should be applied to this electrode (grid 6). The correction-circuit impedance must be \leq 100 k Ω . To prevent distortion, the output impedances of the x-amplifiers should be \leq 10 k Ω .

If no correction is required, grid 6 should be connected to mean x-plate potential (V $_{g2(\ell)}$).

Angle between x and y-traces	90 ± 1°
Angle between x-trace and x-axis of the face plate	≤ 50*

CAPACITANCES (approx. values)

x ₁ to all other elements except x ₂	$C_{\times 1}(\times 2)$	4,5 pF
x2 to all other elements except x1	$C_{\times 2(\times 1)}$	4,5 pF
y ₁ to all other elements except y ₂	Cy1(y2)	3,5 pF
y ₂ to all other elements except y ₁	Cy2(y1)	3,5 pF
x ₁ to x ₂	C_{x1x2}	2 pF
y ₁ to y ₂	Cy1y2	1 pF
Control grid to all other elements	C _{g1}	6 pF
Cathode to all other elements	c_k	2,7 pF

^{*} The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 165 Ω at 20 °C (max. 250 Ω at 80 °C). Approx. 5 mA causes 1° trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances (± 5°) and earth magnetic field with reasonable shielding (± 2°).

DIMENSIONS AND CONNECTIONS

Dimensions in mm

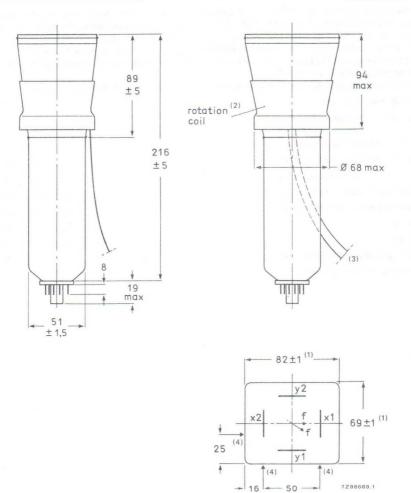


Fig. 1 Outlines; for notes see bottom of opposite page.

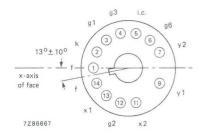


Fig. 2 Pin arrangement; bottom view.

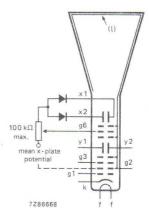
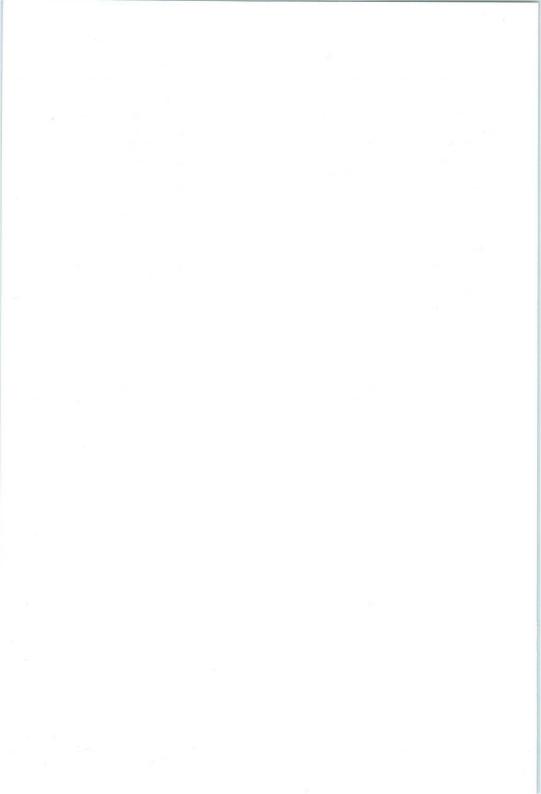


Fig. 3 Electrode configuration.

Notes to the drawing on opposite page.

- Dimensions of face plate only. The complete assembly of face plate and cone (frit seal included) will pass through an opening of 85 mm x 72 mm (diagonal 107 mm).
- 2. The coil is fixed to the envelope with resin and adhesive tape.
- 3. The length of the connecting leads of the rotation coil is min. 350 mm.
- 4. Reference points on face plate for screen alignment.

TYPICAL OPERATION*					
Conditions (note 1)					
Accelerator voltage	1/		2000	V	
	$V_{g2}(\ell)$				
Astigmatism control voltage	$\Delta V_{g2(\ell)}$		0	V	note 2
Focusing electrode voltage	V_{g3}	220	to 360	V	
Cut-off voltage for visual extinction of focused spot	$-v_{g1}$	22	? to 65	V	
Performance					
Useful scan horizontal vertical				mm mm	
Deflection coefficient horizontal vertical	M _X	€	39	V/cm V/cm V/cm	
vertical	My	\leq	25,5	V/cm	
Line width at 10 μ A beam current	I.w.	\approx	0,2	mm	note 3
Deviation of linearity of deflection		<	2	%	note 4
Geometry distortion		see no	ote 5		
Grid drive for 10 μA screen current	V_d	\approx	10	V	
LIMITING VALUES (Absolute maximum rating system)					
Accelerator voltage	$V_{g2(\ell)}$	max.	2200	V	
Focusing electrode voltage	V_{g3}	max.	2200	V	
Voltage between accelerator electrode and grid 6	V _{g2/g6}	max.	± 500	V	
Voltage between accelerator electrode and any deflection plate	Varia	2001	± 500	V	
	$V_{g2/x/y}$	max.	200		
Control grid voltage	$-V_{g1}$	min.		V	
Cathode to heater voltage positive negative	V _{kf} -V _{kf}	max.	125 125		
Grid drive, averaged over 1 ms	V_d	max.	20	V	
Screen dissipation	WQ	max.	3	mW/cm	12
Control grid circuit resistance	R _{g1}	max.	1	$M\Omega$	


^{*} Notes are on the next page.

NOTES

- 1. The mean x-plate potential and the mean y-plate potential should be equal to $V_{\alpha 2(\ell)}$.
- 2. The tube features internal magnetic correction for spot shaping (astigmatism) and vertical eccentricity calibration. Correction is obtained at $V_{\rm q2}$ = 1800 to 2200 V; optimum at $V_{\rm q2}$ = 2000 V.
- 3. Measured with the shrinking raster method within the useful scan under typical operating conditions, adjusted for optimum focus and dynamic correction applied.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:

- a) Under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μ A and adjust V_{g3} for smallest spot size at the centre of the screen. When measuring the beam current, grid 6 should be connected to g2-potential and the diodes should be disconnected from the x-plates.
- b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{y1} = V_{y2} = 2000 \text{ V}; V_{x1} = 1300 \text{ V}; V_{x2} = 1700 \text{ V}, \text{ thus directing the total beam current to } x_2.$ Measure the current on x_2 and adjust $V_{\alpha 1}$ for $I_{x2} = 10 \mu A$.
- c) Set again for the conditions under a), without touching the V_{g1} control. The screen current of the resulting raster display is now 10 μ A. Adjust V_{g3} for optimum focus in the centre of the screen and apply dynamic correction to grid 6 for optimum vertical line width.
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5. A graticule consisting of concentric rectangles of 70 mm x 56 mm and 68,4 mm x 54,4 mm is aligned with the face plate (using the reference points). With optimum trace rotation correction, horizontal and vertical lines will fall between these rectangles.

- mono accelerator
- 10 cm diagonal rectangular flat face
- dynamic deflection defocusing correction
- internal magnetic correction for astigmatism and vertical eccentricity
- low heater power consumption
- for portable oscilloscopes with up to 25 MHz bandwidth, and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$V_{g2}(\ell)$	2000	V
Minimum useful scan area		70 x 56	mm
Deflection coefficient			
horizontal	M _×	36	V/cm
vertical	My	23	V/cm

The D10-181GY is equivalent to type D10-180GY except for the following.

HEATING

Indirect by a.c. or d.c.*

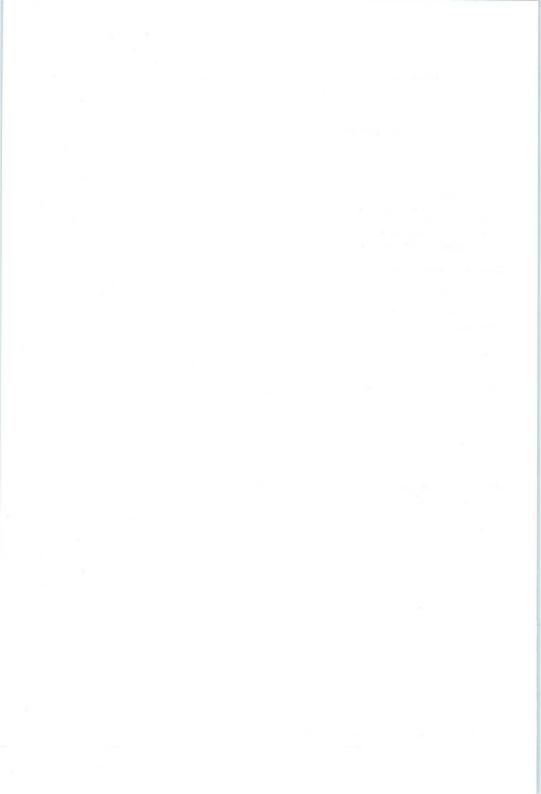
Heater voltage

Heater current

6,3 V 0,1 A

LIMITING VALUES (Absolute maximum rating system)

Cathode to heater voltage


positive negative $-V_{kf}$

Vf

15

100 V max. 15 V max.

^{*} Not to be connected in series with other tubes.

12 cm diagonal rectangular flat-faced oscilloscope tubes with mesh and metal-backed screen with internal graticule. For use in compact oscilloscopes.

QUICK REFERENCE DATA

Final accelerator voltage	$V_{q8(\ell)}$ 10	kV
Minimum useful scan area	80 mm x 64	mm
Deflection coefficient		
horizontal	M _X 15,6	V/div
vertical	M _y 4,1	V/div

OPTICAL DATA	
OFTICAL DATA	
Screen	metal-backed phosphor
type	GH, colour green
persistence	medium short
Useful screen area	≥ 80 mm x 64 mm
Useful scan area	≥ 80 mm x 64 mm
Spot eccentricity in horizontal and vertical directions	≤0,6 div
Internal graticule	type 115; see Fig. 5
HEATING	

Indirect by a.c. or d.c.* Heater voltage V_f 6.3 V Heater current 0,1 A If

^{*} Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included) ≤ 335 mm

86 ± 2 mm x 98 ± 2 mm Faceplate dimensions

Net mass approx. 700 g

Base 14 pin, all glass

Mounting

The tube can be mounted in any position. It should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket, supplied with tube type 55566 Side contact connector (5 required) type 55561 type 55563A Final accelerator contact connector

electrostatic **FOCUSING**

DEFLECTION double electrostatic

symmetrical x-plates y-plates symmetrical

90 ± 10 Angle between x and y-traces ≤50 * Angle between x-trace and x-axis of the internal graticule

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the

electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

x ₁ to all other elements except x ₂	C _{x1(x2)}	5,3 pF
x2 to all other elements except x1	C _{x2(x1)}	5,3 pF
y ₁ to all other elements except y ₂	Cy1(y2)	3,6 pF
y ₂ to all other elements except y ₁	C _{y2(y1)}	3,6 pF
x ₁ to x ₂	C_{x1x2}	2,1 pF
y ₁ to y ₂	Cy1y2	1,7 pF
Control grid to all other elements	C _{g1}	5,5 pF
Cathode to all other elements	Ck	4,5 pF

The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a maximum resistance of 150 Ω . Under typical operating conditions, approx. 50 ampere-turns are required for the maximum rotation of 50.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

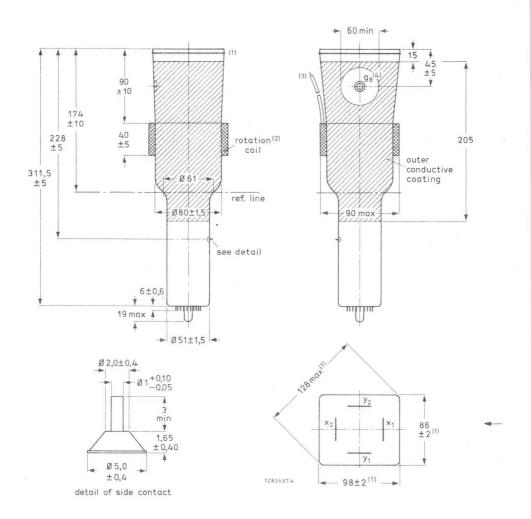


Fig. 1 Outlines.

- 1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2,8 mm.
- 2. The coil is fixed to the envelope by means of adhesive tape.
- Connection cable, comprising two wires for connection of the rotation coil, and one green wire for earthing the outer conductive coating. Minimum cable length is 120 mm.
- The centre of the final accelerator contact is situated within a square of 10 mm x 10 mm around the true geometrical position.

DIMENSIONS AND CONNECTIONS (continued)

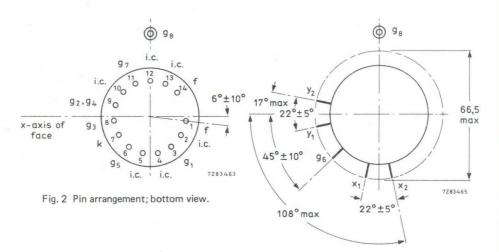


Fig. 3 Side-contact arrangement; bottom view.

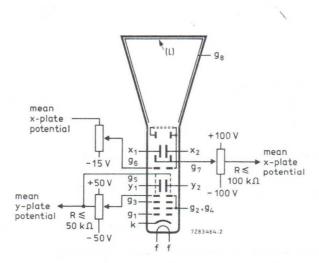


Fig. 4 Electrode configuration.

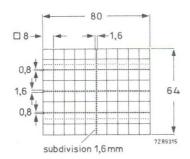


Fig. 5 Internal graticule. Line width = 0,15 mm; dot diameter = 0,32 mm.

 $V_{g8(\ell)}$

TYPICAL OPERATION (for notes see page 6)

Conditions

Final accelerator voltage

Deviation of deflection linearity

Geometry control electrode voltage	V_{g7}	1500	± 100	V (note 1)	
Post deflection shield and interplate shield voltage	V_{g6}		1500	V	
Background illumination control voltage	ΔV_{g6}	0 to	o –1 5	V (note 1)	
Deflection plate shield voltage	V_{q5}		1500	V (note 2)	
Focusing electrode voltage	V_{g3}	250 t	o 350	V	
First accelerator voltage	$V_{g2,g4}$		1500	V	
Astigmatism control electrode voltage	$\Delta V_{g2,g4}$		± 50	V (note 3)	
Cut-off voltage for visual extinction of focused spot	$-v_{g1}$	18	to 60	V	
Performance					
Useful scan horizontal vertical		<i>> ></i>	80 64	mm mm	
Deflection coefficient	280				
horizontal	M_X	<		V/div V/div	
vertical	My	\leq		V/div V/div	
Line width	I.w.	typ.	0,35	mm (note 4)	
Grid drive for 10 μ A screen current	V_d	appro	x.	12 V	
Geometry distortion		see no	ote 5		

≤ 2%; see note 6

10 kV

LIMITING VALUES (Absolute maximum rating system)				
Final accelerator voltage	V _{a8(ℓ)}	max.	11	kV
Geometry control electrode voltage	V_{g7}	max.	2200	
Post deflection shield and inter-plate	· g/	11100747		
shield voltage	V_{q6}	max.	2200	V
Deflection plate shield voltage	V_{g5}	max.	2200	V
Focusing electrode voltage	V_{g3}	max.	2200	V
First accelerator and astigmatism voltage	$V_{g2,g4}$	max. min.	2200 1350	
Control grid voltage	$-v_{g1}$	max. min.	200	
Cathode to heater voltage positive negative	V _{kf} -V _{kf}	max. max.	100 15	
Voltage between astigmatism control electrode and any deflection plate	V _g 4/ _X V _q 4/ _Y	max.	500 500	
Grid drive, averaged over 1 ms	V _d	max.	20	V
Screen dissipation	Wg	max.	8	mW/cm ²
Control grid circuit resistance	R _{g1}	max.	1	Ω M

Notes

- 1. The tube is designed for optimum performance when operating at a ratio $V_{g8(g)}/V_{g2,g4}$ = 6,7. The geometry control electrode voltage V_{g7} should be adjusted within the indicated range (values with respect to the mean x-plate potential).
 - A negative control voltage V_{g6} (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion, and a slight increase of background light. By the use of the two voltages V_{g6} and V_{g7} , the best compromise between background light and raster distortion can be found.
- 2. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
- The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4. Measured with the shrinking raster method in the centre of the screen, under typical operating conditions, adjusted for optimum spot size, at a beam current of 10 μ A.
- 5. A graticule consisting of concentric rectangles of 80 mm x 64 mm and 78,2 mm x 62,6 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.
- 6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

INSTRUMENT CATHODE-RAY TUBE

- mono accelerator
- 12 cm diagonal rectangular flat face
- dynamic deflection defocusing correction
- internal magnetic correction for astigmatism, vertical eccentricity and orthogonality
- low heater power consumption
- for portable oscilloscopes with up to 25 MHz bandwidth, and read-out devices

OUICK REFERENCE DATA

Accelerator voltage	V _{g2,g4,g5(ℓ)}	2000	V
Minimum useful scan area		80 mm x 64	mm
Deflection coefficient			
horizontal	M _×	32	V/cm
vertical	My	21	V/cm

OPTICAL DATA

Screen	
type	

persistence

Useful screen area

Useful scan area

Internal graticule

HEATING

Indirect by a.c. or d.c.*

Heater voltage

Heater current

Heating time to attain 10% of the cathode current at equilibrium conditions

GY, colour green

medium

Vf

If

≥ 82 mm x 66 mm; note 1

≥ 80 mm x 64 mm

type 119; see Fig. 4

6,3 V

0,1 A

approx. 7 s

^{*} Not to be connected in series with other tubes.

D12-130GY/119

MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included)

Faceplate dimensions 98 ± 0,5 mm x 82 ± 0,5 mm

≤ 257 mm

Net mass approx. 0,7 kg

Base 12-pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Socket with solder tags type 55594 Socket with printed-wiring pins type 55595

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x-plates

symmetrical

y-plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the

DYNAMIC DEFLECTION DEFOCUSING CORRECTION

electron beam, hence a low impedance deflection plate drive is desirable.

The tube has a special electrode, positioned between the x and y-plates, for dynamic correction of deflection defocusing, to improve the uniformity of the extremely good line width up to the screen edges. If use is made of this dynamic correction, a negative voltage proportional to, and approx. 50% of, the negative horizontal deflection plate voltage should be applied to this electrode (grid 6).

The correction-circuit impedance must be \leq 100 k Ω . To prevent distortion, the output impedances of the x-amplifiers should be \leq 10 k Ω .

If no correction is required, grid 6 should be connected to mean x-plate potential $(V_{a2(g)})$.

CAPACITANCES (approx. values)

x ₁ to all other elements except x ₂	C _{x1(x2)}	4,5 p	ρF
x2 to all other elements except x1	$C_{x2(x1)}$	4,5 p	pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	3,5 p	ρF
y ₂ to all other elements except y ₁	Cy2(y1)	3,5	pF
x ₁ to x ₂	C_{x1x2}	2 p	pF
y ₁ to y ₂	Cy1y2	1 1	pF
Control grid to all other elements	C_{g1}	6 p	pF
Cathode to all other elements	c_k	2,7	pF
Grid 6 to all other elements	C _{a6}	11	pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

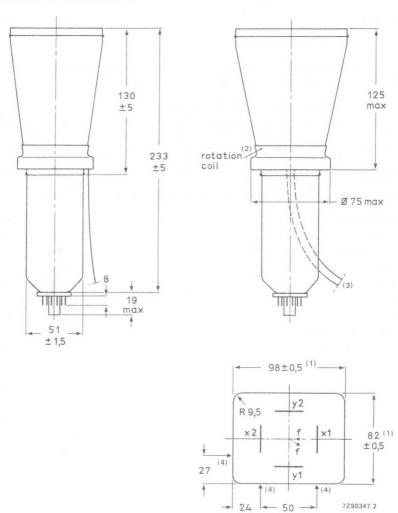


Fig. 1 Outlines.

- (1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of 101 mm \times 85 mm.
- (2) The coil is fixed to the envelope with resin and adhesive tape.
- (3) The length of the connecting leads of the rotation coil is min. 350 mm.
- (4) Reference points on faceplate for graticule alignment (see Fig. 4).

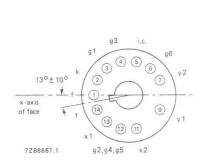


Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.

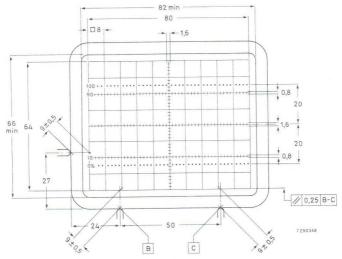


Fig. 4 Front view of tube with internal graticule, type 119. Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

	The second secon	CHARLEST AND COMPANIES.	CONTRACTOR DESCRIPTION OF THE PARTY NAMED IN	THE RESERVE AND ADDRESS OF THE PARTY OF THE	-
TYPICAL OPERATION (voltages with respect to	cathode)				
Conditions					note 2
Accelerator voltage	V _{g2,g4,g5,(ℓ)}		2000	V	
Astigmatism control voltage	ΔV _{g2,g4,g5,(ℓ)}		0	V	note 3
Focusing voltage	V _{a3}	220	to 360	V	note 4
Cut-off voltage for visual extinction	90				
of focused spot	$-V_{g1}$	2:	2 to 65	V	note 5
Performance					
Deflection coefficient			32	V/cm	
horizontal	M_{\times}	<	35	V/cm	
			21	V/cm	
vertical	My	\leq	23	V/cm	
Deviation of deflection linearity		\leq	2	%	note 6
Geometry distortion		see not	e 7		
Eccentricity of undeflected spot with					
respect to internal graticule horizontal		<	4	mm	note 3
vertical		\left\	2	mm	note 3
Angle between x and y-traces			900		note 3
Angle between x-trace and x-axis					
of the internal graticule		\leq	50		note 8
Grid drive voltage for 10 μA screen current	V_d	\approx	11	V	note 5
Line width	I.w.	\approx	0,2	mm	note 9
LIMITING VALUES (Absolute maximum rating	system)				
Accelerator voltage	Vg2,g4,g5,(l)	max.	2200	V	
Focusing voltage	V_{g3}	max.	2200	V	
Voltage between accelerator electrode					
and grid 6	V _{g2/g6}	max.	± 500	V	
Voltage between accelerator electrode	7		. 500		
and any deflection plate	$\sqrt{g2/x/y}$	max.	± 500	V	
Control grid voltage	$-V_{g1}$	max. min.	200	V	
Cathode to heater voltage					
positive	V_{kf}	max.	125	V	
negative	$-V_{kf}$	max.	125	V	
Heater voltage	V_{f}	max. min.	6,6 6,0	V	
Grid drive voltage, averaged over 1 ms	Vd	max.	20	V	
Screen dissipation	W ₀	max.	3	mW/cm ²	
Control grid circuit resistance	~	max.	1	MΩ	
Series of grid directic resistance	R _{g1}	max,	,	1417.5	

NOTES

- As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 82 mm x 66 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
- 2. The mean x-plate potential and the mean y-plate potential should be equal to $V_{q2,q4,q5}(\ell)$.
- 3. The tube features internal magnetic correction for astigmatism, orthogonality and eccentricity calibration. Optimum spot is obtained if $V_{q2,q4,q5}(\ell)$ is equal to mean y-potential.
- An actual focus range of approx. 50 V should be provided on the front panel. V_{g3} decreases with increasing grid drive (see also Fig. 5).
- 5. Intensity control on the front panel should be limited to the maximum useful screen current (approx. 80 μ A; see also Fig. 5). It is to be adjusted either by the grid drive (up to 30 V) or for maximum acceptable line width. The corresponding cathode current or Ig2,g4,g5 (up to 500 μ A) depend on the cut-off voltage and cannot be used for control settings.
- 6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 7. A graticule consisting of concentric rectangles of 80 mm x 64 mm and 78,3 mm x 62,3 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
- 8. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 180 \pm 25 Ω at 20 °C, which increases by 0,4%/K for rising temperature. Approx. 6 mA causes 1º trace rotation. Thus maximum required voltage is approx. 12 V for tube tolerances (\pm 5°) and earth magnetic field with reasonable shielding (\pm 2°).
- Measured with the shrinking raster method within the useful scan under typical operating conditions, adjusted for optimum focus and dynamic correction applied.
 - As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:
 - a) Under typical operating conditions, apply a small raster display (no overscan), adjust V_{g1} for a beam current of approx. 10 μ A and adjust V_{g3} for smallest spot size at the centre of the screen. When measuring the beam current, grid 6 should be connected to g2-potential and the diodes should be disconnected from the x-plates.
 - b) Under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{y1} = V_{y2} = 2000 \text{ V}; V_{x1} = 1300 \text{ V}; V_{x2} = 1700 \text{ V}, \text{ thus directing the total beam current to } x_2.$ Measure the current on x_2 and adjust V_{q1} for $I_{x2} = 10 \mu\text{A}$.
 - c) Set again for the conditions under a), without touching the V_{g1} control. The screen current of the resulting raster display is now 10 μ A. Adjust V_{g3} for optimum focus in the centre of the screen and apply dynamic correction to grid 6 for optimum vertical line width.

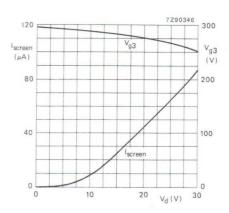


Fig. 5 Screen current (I_{screen}) and focusing voltage (V_{g3}) as a function of grid drive voltage (V_{d}); typical curves.

INSTRUMENT CATHODE-RAY TUBE

 $13\ \mathrm{cm}$ diameter flat faced short oscilloscope tube (max. $35\ \mathrm{cm}$) with post-deflection acceleration by means of a helical electrode. The tube is provided with deflection blanking.

QUICK REFERENC	E DATA			
Final accelerator voltage	Vg7(1)	=	3000	V
Display area		8 0	em x fu	ll scan
Deflection coefficient, horizontal	M_X	=	24	V/cm
vertical	M_y	=	11.5	V/cm

SCREEN

	Colour	Persistence
D13-27GH	green	medium short

Useful screen diameter

min.

114 mm

Useful scan at $V_{g_7(\ell)}/V_{g_5} = 2$

horizontal

full scan

vertical

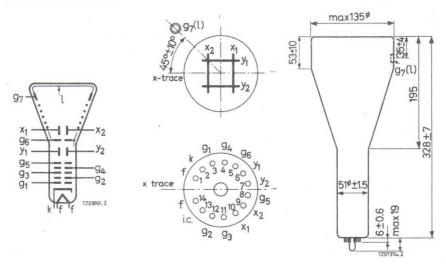
min.

80 mm

The useful scan may be shifted vertically to a max. of $4\ \mathrm{mm}$ with respect to the geometric centre of the faceplate.

HEATING

Indirect by A.C. or D.C.; parallel supply


Heater voltage

Heater current

 $\frac{V_f}{I_f} = 6.3 \text{ V}$

MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

14 pin all glass

Dimensions and connections

Overall length (also with socket type 55566)	max.	354	mm
Face diameter	max.	135	mm
Net weight	approx.	680	g.

Accessories

Socket (supplied with tube)	type	55566
Final accelerator contact connector	type	55563A
Mu metal shield	type	55557

CAPACITANCES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	=	4.5	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x_2(x_1)}$	=	4.5	pF
\mathbf{y}_1 to all other elements except \mathbf{y}_2	$C_{y_1(y_2)}$	=	5	pF
\mathbf{y}_2 to all other elements except \mathbf{y}_1	$C_{y_2(y_1)}$			
x_1 to x_2	$C_{x_1x_2}$			
\mathbf{y}_1 to \mathbf{y}_2	$C_{y_1y_2}$			
Grid No.1 to all other elements	c_{g_1}	=	5.5	pF
Cathode to all other elements	C_k	=	5	pF
Grid No.3 to all other elements	C_{g_3}	=	10	pF

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates

symmetrical

y plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

 $90^{\circ} \pm 1^{\circ}$

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage	Vg7(1)	=	3000	V
Astigmatism control electrode voltage	V_{g_5}	=	1500	V^2)
First accelerator voltage	v_{g_2}	=	1500	V
Beam current	Ig7(1)	=	10	μA
Line width	1.w.	=	0.25	mm

HELIX

Post deflection accelerator helix resistance The helix is connected between $g_7(\ell)$ and g_6

min. 50 $M\Omega$

²⁾ See last page.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	Vg7(1)	= '	3000	V
Geometry control electrode voltage	v_{g_6}	=	1500 ± 75	V 1)
Astigmatism control electrode voltage	V_{g_5}	=	1500 ± 75	V^2)
Focusing electrode voltage	v_{g_4}	=	300 to 550	V
Deflection blanking electrode voltage	v_{g_3}	=	1500	V
Deflection blanking control voltage	Δv_{g_3}	=	max60	V^3)
First accelerator voltage	v_{g_2}	=	1500	V
Control grid voltage for visual extinction of focused spot	v_{g_1}	=	-38 to -135	V
Deflection coefficient				
horizontal	M_X	=	21 to 27	V/cm
vertical	M_{V}	=	9.8 to 12.2	V/cm
Deviation of linearity of deflection		=	max. 2	% ⁴)
Geometry distortion			See note 5	
Useful scan				
horizontal			full scan	
vertical		=	min. 80	mm

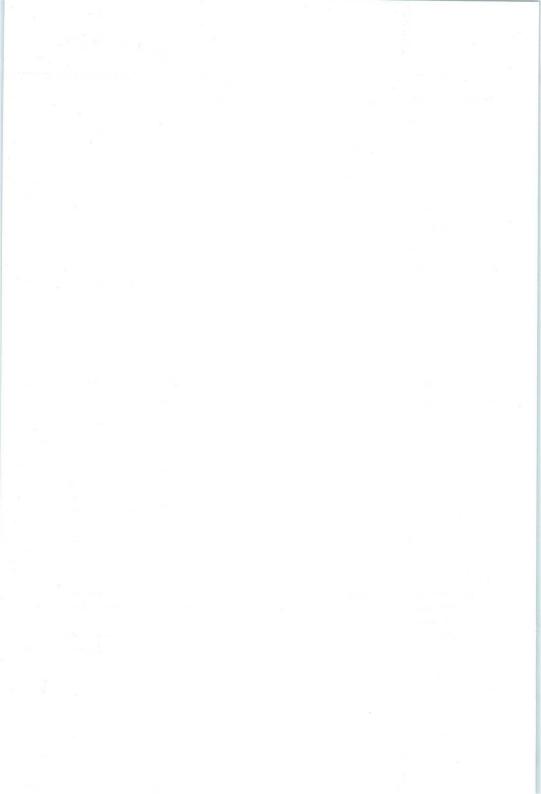
CIRCUIT DESIGN VALUES

Focusing voltage	v_{g_4}	= 200 to 370	V per kV of V _{g5}
Control grid voltage for visual extinction of focused spot	$-v_{g_1}$	= 25 to 90	V per kV of V _{g2}
Deflection coefficient at $V_{g_7(\ell)}/V_{g_5} = 2$			
horizontal	M_X	= 14 to 18	V/cm per kV of V _{g5}
vertical	M_y	= 6.5 to 8.2	V/cm per kV of Vg5
Control grid circuit resistance	R_{g_1}	= max. 1.5	$M\Omega$
Deflection plate circuit	-		
resistance	R_x, R_y	= max. 50	kΩ
Focusing electrode current	I_{g_4}	= -15 to +10	μA ⁶)

Notes see next page.

LIMITING VALUES (Absolute max. ratio	ng system)				
Final accelerator voltage	Vg7(1)	11	max. min.	3300 1800	V V
Geometry control electrode voltage	v_{g_6}	11	max.	1700	V
Astigmatism control electrode voltage	v_{g_5}	= =	max. min.	1700 1200	V V
Focusing electrode voltage	v_{g_4}	=	max.	1200	V
Deflection blanking electrode voltage	v_{g_3}	=	max.	1700	V
First accelerator voltage	v_{g_2}	=	max.	1700	V
Control grid voltage					
negative	$-v_{g_1}$	=	max.	200	V
positive	$-v_{g_1}$	=	min.	0	V
Voltage between astigmatism control					
electrode and any deflection plate	$V_{g_5/x}$	=	max.	500	V
	$V_{g_5/y}$	=	max.	500	V
Screen dissipation	W_{ℓ}	=	max.	3	mW/cm^2
Ratio $V_{g_7(\ell)}/V_{g_5}$	$V_{g_7(\ell)}/V_{g_5}$	=	max.	2	
Cathode current, average	I_k	=	max.	300	μ A

¹⁾ This tube is designed for optimum performance when operating at the ratio $V_{g7}(\ell)/V_{g5}$ = 2. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.


²⁾ The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.

³⁾ For beam blanking of a beam current of 10 μA .

⁴⁾ The sensitivity at a deflection of less than 75% of the usefull scanwill not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

⁵⁾ A graticule, consisting of concentric rectangles of 100 mm x 60 mm and 97 mm x 58 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

⁶⁾ Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

 $13\ \mathrm{cm}$ diameter flat faced monoaccelerator oscilloscope tube primarily intended for use in inexpensive oscilloscopes and read-out devices.

QUICK RI	EFERENCE DATA		
Accelerator voltage	$V_{g_2,g_4,g_5(\ell)}$	2000	V
Display area		100 x 80	mm^2
Deflection coefficient, horizontal	M_X	31.3	V/cm
vertical	M_{V}	14.4	V/cm

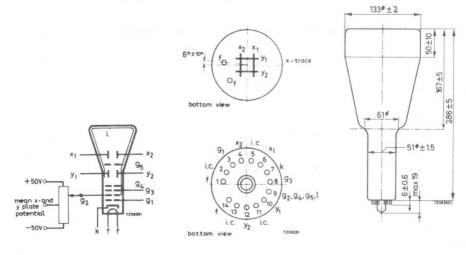
SCREEN

	colour	persistence
D13-480GH	green	medium short
D13-480GM	yellowish green	long

Useful screen diameter min. 114 mm

Useful scan

horizontal min. 100 mm


vertical min. 80 mm

The useful scan may be shifted vertically to a max. of $6\,\mathrm{mm}$ with respect to the geometric centre of the faceplate.

HEATING: Indirect by A.C. or D.C.; parallel supply

Heater voltage $rac{V_{\mathrm{f}}}{}$ 6.3 V Heater current If 300 mA

- MECHANICAL DATA (Dimensions in mm)

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length	max.	310	mm
Face diameter	max.	135	mm
Base 14 nin all glass			

approx.	650	g
	approx.	approx. 650

Accessories

Socket (supplied with tube)	type	55566
Mu-metal shield	type	55580

CAPACITANCES

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x1(x2)}$	4	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x2}(x1)$	4	pF
\mathbf{y}_1 to all other elements except \mathbf{y}_2	$C_{y1(y2)}$	3.5	pF
y_2 to all other elements except y_1	$C_{y2(y1)}$	3	pF
x_1 to x_2	C_{x1x2}	1.6	pF
y_1 to y_2	C_{y1y2}	1.1	pF
Control grid to all other elements	C_{g1}	5.5	pF
Cathode to all other elements	$C_{\mathbf{k}}$	4	pF

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates

symmetrical

y plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

 $90 + 1^{\circ}$

LINE WIDTH 3)

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current Iq = 10 μ A.1)

Line width

1.w.

0.30 mm

b) under these conditions, but no raster, the deflection plate voltages should be changed to

 $\rm V_{y1}$ = $\rm V_{y2}$ = 2000 V; $\rm V_{x1}$ = 1300 V; $\rm V_{x2}$ = 1700 V, thus directing the total beam current to x2.

Measure the current on x_2 and adjust V_{g1} for I_{x2} = 10 μA (being the beam current I_0)

c) set again for the conditions under a), without touching the $\rm V_{g1}$ control. Now a raster display with a true 10 $\mu\rm A$ screen current is achieved.

d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.

³) See next page.

April 1984

T) As the construction of this tube does not permit a direct measurement of the beam current, this current should be determined as follows:

a) under typical operating conditions, apply a small raster display (no overscan), adjust $\rm V_{g1}$ for a beam current of approx. 10 $\rm \mu A$ and adjust $\rm V_{g3}$ and $\rm V_{g2}, g4, g5, \ell$ for optimum spot quality at the centre of the screen.

TYPICAL OPE	RATING	CONDITIONS 3	3)
-------------	--------	--------------	----

,			
Accelerator voltage	$V_{g_2,g_4,g_5,\ell}$	2000	V
Astigmatism control voltage	$\Delta V_{g_2,g_4,g_5,\ell}$	± 50	V 1)
Focusing electrode voltage	v_{g_3}	220 to 370	V
Control grid voltage for visual extinction of focused spot	v_{g_1}	max65	V
Grid drive for $10~\mu\mathrm{A}$ screen current		approx.10	V
Deflection coefficient, horizontal	M_X	31.3 max. 33	V/cm V/cm
vertical	My	14.4 max. 15.5	V/cm V/cm
Deviation of linearity of deflection		max. 1	% 2)
Geometry distortion		see note 4	
Useful scan, horizontal		min. 100	mm
vertical		min. 80	mm
LIMITING VALUES (Absolute max. rating sys	stem)		
Accelerator voltage	$v_{g_2,g_4,g_5,\boldsymbol{l}}$	max. 2200 min. 1500	V
Focusing electrode voltage	v_{g_3}	max. 2200	V
Control grid voltage, negative	-V _{g1}	max. 200 min. 0	V V
Cathode to heater voltage	V _{kf} -V _{kf}	max. 125 max. 125	V V
Grid drive, average		max. 20	V
Screen dissipation	W_{ℓ}	max. 3	mW/cm²
Control grid circuit resistance	Rg1	max. 1	$M\Omega$

¹⁾ All that will be necessary when putting the tube into operation is to adjust the astigmatism control voltage once for optimum spot shape in the screen centre. The control voltage will always be in the range stated, provided the mean x and certainly the mean y plate potential was made equal to $V_{g_2,\,g_4,\,g_5,\,\ell}$ with zero astigmatism correction.

²⁾ The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

³⁾ The mean x and certainly the mean y plate potential should be equal to $V_{g_2,\,g_4,\,g_5,\,l}$ with astigmatism adjustment set to zero.

⁴⁾ A graticule, consisting of concentric rectangles of 70 mm x 85 mm and 68.8 mm x 83 mm as aligned with the electrical x-axis of the tube. The edges of a raster will fall between these ractangles.

INSTRUMENT CATHODE-RAY TUBE

13 cm diameter flat-faced monoaccelerator oscilloscope tube with low heater consumption.

QUICK REFERENCE DATA

Accelerator voltage	Vg2, g4, g5 (8)	2000	V
Display area		100 x 80	mm ²
Deflection coefficient			
horizontal	M _×	31,3	V/cm
vertical	My	14,4	V/cm

The D13-481.. is equivalent to the type D13-480.. except for the following.

HEATING

Indirect by a.c. or d.c.; parallel

Heater voltage $$V_f$$ 6,3 $$V_f$$ Heater current $$I_f$$ 95 mA

LIMITING VALUES (Absolute maximum rating system)

CAPACITANCES

Cathode to all other elements C_k 2,3 pF

INSTRUMENT CATHODE-RAY TUBE

 $\mbox{The\,D13-500GH/01}$ is a wide-band oscilloscope tube designed for observation and measurement of high frequency phenomena.

This tube has a rectangular 13 cm diagonal flat face with aluminized screen and internal graticule, post-deflection accelerator with mesh, vertical deflection by means of a symmetrical helix system, scan magnification in the vertical direction by means of an electrostatic quadrupole lens and correction coils for trace alignment, vertical shift of the display area and correction of the orthogonality of traces.

QUICK REFERENCE DA	TA	A	
Final accelerator voltage	Vg ₁₃ (1)	15	kV
Display area	100 x 60		mm^2
Deflection coefficient, horizontal vertical	${ m M_{x}} { m M_{y}}$		V/cm V/cm
Bandwidth of the vertical deflection system	В	800	MHz

C	~	n	E	87	PA T
	١.	к		М.	IN.

		COTOUL	persistence		
	D13-500GH/01	green	medium sho	rt	
Useful screen di	mensions		min.	100 x 60	2
Useful scan at V	$g_{13}(\ell)/V_{g2} = 6$ horizontal vertical		min.	100 60	mm mm
Eccentricity in	horizontal direction		max.	7	mm

colour

persistence

max.

The scanned raster can be shifted in vertical direction and aligned with the internal graticule by means of correction coils mounted on the tube (see "Correction coils").

For illumination of the internal graticule see last page.

Eccentricity in vertical direction

6 mm

DESCRIPTION

General

 $The \, D13-500 GH/01 \ has \ been \ primarily \ designed \ for \ wide-band \ high-frequency \ applications. \ It combines \ high \ brightness, \ high \ deflection \ sensitivity \ and \ a \ large \ band-width \ of the \ vertical \ deflection \ system.$

In order to obtain the high sensitivity, the post-deflection acceleration system embodies a mesh. The sensitivity in the vertical direction has been further increased by means of an electrostatic quadrupole lens that has been inserted between the vertical deflection system and the horizontal deflection plates. The large bandwidth has been obtained by using, for the vertical deflection, a delay-line system instead of deflection plates. With the typical operating conditions, 2500 V first accelerator voltage and 15000 V final accelerator voltage, the vertical and the horizontal deflection factors are about 2 V/cm and 15 V/cm respectively, with a $10\,\mathrm{x}\,6\,\mathrm{cm}^2$ display area.

The bulb has a rectangular face and the screen is aluminized. To eliminate parallax errors, an internal graticule is incorporated. Correction coils have been provided to permit image rotation, correction of the orthogonality of traces and the adjustment of the vertical useful scan with respect to the graticule.

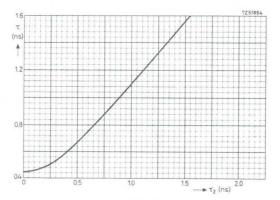


Fig.1 Rise time of the display τ as a function of the rise time of the input signal au_2

The vertical deflection system

For the vertical deflection, a delay-line system is used so that transit-time effects are practically eliminated. The system consists of two flattened helices to which a symmetrical deflection signal should be applied. Under these conditions, the characteristic impedance of each helix is $150\ \Omega.$ The input and output terminals are brought out on opposite sides of the neck on the same plane. The input terminals are connected to the beginning of the helices by means of a matched, internal two-wire transmission line. The output of the deflection system should be properly terminated in order to avoid signal reflections.

With the typical operating conditions, the band-width of the deflection system, i.e. the frequency at which the sensitivity is $3\ dB$ below its value at D.C., is about $800\ MHz$. Even above this frequency, the response decreases only gradually so that, for narrow-band applications, the tube can be used with reduced vertical sensitivity up to about $2000\ MHz$.

The rise time τ_1 , i.e. the time interval during which the display of an ideal step-function signal applied to the input goes from 10% to 90% of its final value, is about 0.45 ns. If the input signal has the rise-time τ_2 , the rise-time τ of the display is approximately given by

$$\tau = \sqrt{\tau_1^2 + \tau_2^2}$$

In Fig.1, τ has been plotted as a function of τ_2 , with τ_1 = 0.45 ns. If, for example, the tube is used in combination with an amplifier and the rise-time of the display is to be 1.4 ns (corresponding with 250 MHz band-width), the rise-time of the amplifier should be 1.33 ns. It can be seen that in this region the rise-time of the display is almost equal to the amplifier rise-time, without a significant contribution of the cathode-ray tube.

If the tube is to be used without an amplifier in order to make use of its full band-width capabilities, care should be taken to ensure good symmetry of the input signal.

Fig.2 shows how the tube can be connected to a 50 Ω coaxial input. A matched power divider is used which delivers two identical output signals. One of these is inverted by means of a pulse inverter. An additional length of 50 Ω cable should be inserted into the path of the non-inverted signal having the same delay time as the pulse inverter so that the two signals arrive at the input of the deflection system at the same time. The 75 Ω shunt resistors serve to obtain a correct termination of the 50 Ω lines. Since each branch of the power divider has 6 dB attenuation, the sensitivity, measured at the 50 Ω input, is also 2 V/cm.

December 1974

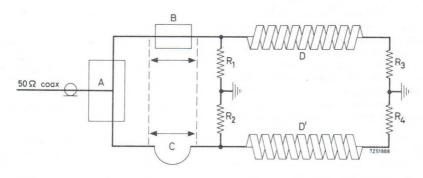
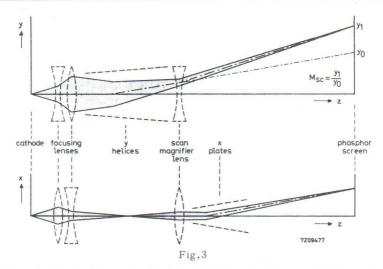


Fig.2

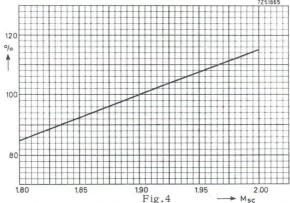
Connection to an asymmetrical 50 Ω input

 R_1 , R_2 : Resistors 75 Ω A: Power divider B: Inverter R_3 , R_4 : Resistors 150 Ω D , D' : Deflection system C: Cable

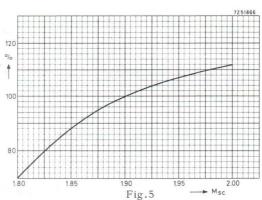

Note: Delay of inverter B and cable C are equal.

Scan magnifier and focusing system

As already mentioned, an electrostatic quadrupole lens, i.e. an electron lens which has two mutually perpendicular planes of symmetry, divergent in one plane and convergent in the other, is used for the magnification of the vertical deflection. This lens is inserted between the vertical deflection system and the horizontal deflection plates, with its plane of divergence in the direction of the vertical deflection. Therefore, it magnifies the vertical deflection without affecting the horizontal de-


flection.

Because of the astigmatic properties of this quadrupole lens, a conventional, rotationally symmetrical focusing lens cannot be used. Instead of this, two more electrostatic quadrupole lenses are incorporated so that focusing is accomplished by means of three quadrupole lenses, with alternating orientation of their planes of convergence and divergence. The focusing action is schematically shown in Fig. 3. The strength of the scan-magnifier lens is controlled by applying to the electrode go a negative voltage with respect to go. Within a certain range of this voltage, corresponding to a scan-magnification factor Msc, i.e. the ratio of the deviations on the screen with and without scan magnification respectively, between 1.8 and 2 the combined effect of the three lenses will yield an approximately circular spot at moderate beam currents. (At high beam currents, when space-charge repulsion causes an increase of spot size, the width of the vertical lines will be smaller than that of the horizontal lines).


In this range, line-width at a fixed value of screen current, and screen current at a fixed value of grid No.1 voltage, are increasing functions of the scan-magnification factor. Figs.4 and 5 show the average relative change with respect to the values at Msc = 1.9 which, generally, is the most suitable compromise.

For minimum defocusing of vertical lines near the upper and lower edge of the display area, the electrode g_8 should be kept at a positive voltage with respect to g_2 (about 200 V with 2500 V first accelerator voltage). As this voltage also has some effect on the scan-magnification factor, both g_8 and g_9 should be connected to g_2 when the deviation without scan magnification is being measured.

Line-width as a function of the scan-magnification factor (approximately) Line-width at $\rm M_{SC}$ = 1.9 is 100%, $\rm I_{SCTeen}$ = const.

December 1974 119

Screen current as a function of the scan-magnification factor (approximately) Screen current at $\rm M_{SC}$ = 1.9 is 100%, $\rm Vg_1$ = const.

For the adjustment of the scan-magnification factor the following procedure is recommended:

- a. Set V_{g_8} and V_{g_9} to 0 with respect to g_2 .
- b. Display a time-base line and adjust V_{g_6} so that the line appears sharply focused.
- c. Apply a square wave signal to the vertical deflection system (the vertical parts of the trace will be out of focus but this is immaterial) and adjust the amplitude so that the height of the display has a convenient value, e.g. 30 mm.
- d. Set V_{g8} and V_{g9} to the appropriate values and readjust V_{g6} so that the horizontal parts of the trace are again in focus.
- e. Check the height of the display (e.g. for $M_{\rm SC}$ = 1.9 this height should now be 57 mm).
- f . If necessary, readjust $V_{\mbox{go}}$ until the desired value of $M_{\mbox{SC}}$ has been obtained.

Focusing is controlled by means of the electrode voltage V_{g_4} and V_{g_6} . The electrodes g_5 and g_7 can be used to centre the beam with respect to the vertical and horizontal deflection systems.

The voltages of the focusing and correction electrodes can be adjusted as follows:

- a. Display a square-wave signal on the screen so that both horizontal and vertical traces are visible.
- b. Adjust $\rm V_{g_6}$ so that the horizontal parts of the display are in focus. The vertical parts will, in general, be out of focus.
- c. Adjust $\rm V_{g4}$ so that the vertical traces are brought into focus. Now the horizontal parts of the display will be out of focus again.
- d. Repeat b) and c) successively until both vertical and horizontal traces are simultaneously in focus.
- e. Adjust V_{g_3} for minimum width of a horizontal line. If necessary, readjust focusing voltages V_{g_4} and V_{g_6} .

- f. Adjust $\rm V_{g7}$ for equal brightness at the left-hand and right-hand edges of the display area. If necessary, readjust the focus by means of $\rm V_{g6}$.
- g. Adjust V_{g_5} so that the position of a horizontal trace not deflected in the vertical direction is at the centre of the vertical useful scan. If necessary, readjust the focus by means of V_{g_4} .

If the graticule is not fully covered by the scanned area the image should be shifted by adjusting the correction coil current (see last page) before the adjustment of $V_{g_{\Sigma}}$ is made.

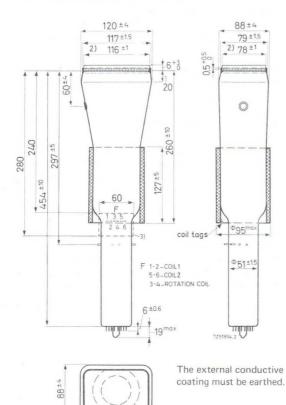
The procedure for the adjustment of the scan-magnification factor and for focusing, as described above, seems to be rather complicated.

However, in practice it will be sufficient to adjust V_{gg} to its nominal value without determining the scan-magnification factor for each individual tube. As to focusing, the user can, with some experience, achieve the best setting with very few adjustments.

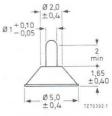
Post-deflection acceleration

The use of a p.d.a. shield (mesh) ensures a high deflection sensitivity. A geometry control electrode, \mathbf{g}_{11} , serves for the correction of pin cushion or barrel distortion of the pattern. In order to suppress background illumination due to secondary electrons originating from the p.d.a. shield \mathbf{g}_{12} , this shield should be kept 12 V negative with respect to \mathbf{g}_{11} whereas the voltage of the interplate shield, \mathbf{g}_{10} should be equal to the mean x-plate potential.

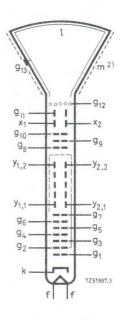
HEATING: Indirect by A.C. or D.C.; parallel supply

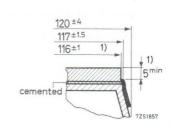

Heater voltage	$V_{\mathbf{f}}$	6.3	V
Heater current	I_f	300	mA

CAPACITANCES


\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x_1(x_2)}$	4.5	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x_2(x_1)}$	4.5	pF
\mathbf{x}_1 to \mathbf{x}_2	$c_{x_1x_2}$	2.7	pF
Control grid to all other elements	c_{g_1}	6	pF
Cathode to all other elements	$C_{\mathbf{k}}$	5	pF
External conductive coating to all other elements	$C_{\mathbf{m}}$	1500	pF

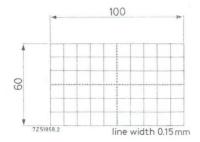
121

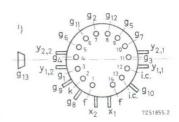

MECHANICAL DATA


Dimensions in mm

detail of side contact

120 ± 4




¹⁾ Clear area for light conductor.

²⁾ These dimensions apply to the illumination plate which will always be within the limits 117 ± 1.5 x 79 ± 1.5 mm of the tube face.

³⁾ The soldering tags will be situated within a rectangle of 60 mm x 40 mm on the rearside of the tube.

MECHANICAL DATA (continued)

1) The centre of the contact is located within a square of 10 mm x 10 mm around the true geometrical position.

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket and front glass plate inclusive) max.

max. 492 mm

Face dimensions max. 124 x 92 mm^2

Net weight approx. 1300 g

Base 14-pin all glass

Accessories

Socket type 55566

Final accelerator contact connector type 55563A

Side contact connector type 55561

Mu-metal screen type 55582

In order to avoid damage to the side contacts the narrower end of the mu-metal screen should have an internal diameter of not less than 65 mm.

D13-500GH/01

FOCUSING electrostatic 1)

DEFLECTION double electrostatic

x plates symmetrical

The y deflection system consists of a symmetrical delay line system.

Characteristic impedance $2 \times 150 \Omega$

Bandwidth (-3 dB) 800 MHz ²)

Rise time < 0.45 ns 3

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam: hence a low impedance deflection plate drive is desirable.

Angle between x and y traces 90° 4) (see "Correction coils")

$$\tau_1 = \sqrt{\tau^2 - \tau_2^2}$$

where au is the rise-time observed on the display.

This should be measured after the angle between the x-traces and y-traces has been corrected by means of the correction coils, otherwise two measurements have to be taken (using either a different polarity of the vertical deflection signal or different direction of the time-base sweep) and the true value of τ has to be calculated as the arithmetic mean of the two results.

¹⁾ Because of the applications of a quadrupole lens for the magnification of the vertical deflection, two more quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided.

²⁾ The band-width is defined as the frequency at which the vertical deflection sensitivity is 3 dB lower than at D.C.

 $^{^3}$) The rise-time is defined as the time interval between 10% and 90% of the final value of deflection when an ideal step-function signal is applied to the vertical deflection system. If the actual signal has an appreciable rise-time τ_2 , the rise-time of the tube can be determined from

⁴⁾ Deviations from the orthogonality of traces can be eliminated by means of correction coils.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen undertypical operating conditions, adjusted for optimum spot size at a beam current I_{ℓ} = 10 μA and a screen magnification factor M_{SC} = 1.9. See also note 3 on page with "Notes".

Line width	1.w.	approx	. 0, 35 mr	n	
TYPICAL OPERATING CONDITIONS					
Final accelerator	$V_{g13(\ell)}$		15	kV	
Post deflection shield voltage (with respect to g ₁₁)	V _{g12} -g ₁₁	-9	to -15	V	
Geometry control electrode voltage	$v_{g_{11}}$		00 ±100	V	1)
Interplate shield voltage	$v_{g_{10}}$		2500	V	2)
Scan magnifier electrode voltage (with respect to g_2)	V _{g9} - _{g2}	-250	to - 375	V	3)
Correction electrode voltage (with respect to g ₂)	$v_{g_8-g_2}$		+200	V	4)
Horizontal beam centering electrode voltage	v_{g_7}	2	500 ±70	V	5)
Vertical beam centering electrode voltage	v_{g_5}		2500	V	
Focusing electrode voltages (with respect to g2)	V _{g6} -g ₂		to -650	V	7)
	Vg4-g2		to -850	V	7)
Spot correction electrode voltage	v_{g_3}	2500 ±70		V	8)
First accelerator voltage	v_{g_2}		2500	V	
Control grid voltage for visual extinction of a focused spot	v_{g1}	Vg1 -75 to -150		V	
Deflection coefficient, horizontal	M_X	typ. max.	13.5 15.0	V/ci V/ci	
vertical	M_y	typ.	1.7 2.0	V/ci V/ci	m ⁹)
Deviation of linearity of deflection			2	%	10)
Geometry distortion		see n	ote 11		
Useful scan, horizontal vertical			100 60	mm mm	

Notes see page with "Notes".

LIMITING VALUES (absolute max. rating system)

Final accelerator voltage	$V_{g_{13}(\ell)}$	max.	18 000 9 000	V V
Post-deflection shield voltage	$v_{g_{12}}$	max.	3 100	V
Geometry control electrode voltage	$v_{g_{11}}$	max.	3 100	V
Interplate shield voltage	$v_{g_{10}}$	max.	3 100	V
Scan-magnifier electrode voltage	V_{gg}	max.	3 000	V
Correction electrode voltage	v_{g_8}	max.	3 200	V
Focusing electrode voltages	v_{g_6}	max.	3 000	V
	-V _{g6} -g2	max.	1 000	V
	V_{g_4}	max.	3 000	V
	-V _{g4} -g ₂	max.	1 000	V
Beam centering electrode voltages	V_{g7}	max.	3 100	V
	v_{g_5}	max.	3 100	V
Spot correction electrode voltage	v_{g_3}	max.	3 100	V
First accelerator voltage	v_{g_2}	max. min.	3 000 2 000	V V
Control grid voltage, negative	$-v_{g_1}$	max.	200	V
positive	v_{g_1}	max.	0	V
Cathode to heater voltage				
cathode positive cathode negative	V _{kf} -V _{kf}	max.	125 125	V V
Voltage between first accelerator				
and any deflection electrode	$v_{\rm g_2}$ x	max.	500 500	V V
Screen dissipation	$V_{g_2}^2 y$ W_{ℓ}	max.	3	mW/cm ²
Average cathode current	I_k	max.	300	μ A
Control grid circuit resistance	R_{g1}	max.	1	$M\Omega$

Notes

- 1) This voltage should be adjusted for optimum pattern geometry.
- 2) This voltage should be equal to the mean x-plate potential.
- 3) The range indicated corresponds to a scan magnification factor, M_{SC} , i.e. the ratio by which the vertical deviation on the screen is increased, in the approximate range $1.8 < M_{SC} < 2.0$, and the tube should not be operated outside this range. Within this range, line width and screen current at a fixed value of the control grid voltage are increasing functions of M_{SC} . The best compromise between brightness and line width is usually found at $M_{SC} \approx 1.9$ which corresponds to $V_{g9-g2} \approx 310$ V.
- 4) For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be adjusted approximately to the value indicated. Since the value V_{g8-g2} has some effect on the scan magnification factor both V_{g8} and V_{g9} should be connected to g_2 when the deviation without scan magnification is to be measured.
- 5) This voltage should be adjusted for equal brightness in the x-direction with respect to the electrical centre of the tube.
- 7) These voltages should be stabilized to within 1 V.
- 8) This voltage should be adjusted for minimum width of a horizontal line.
- $^9)$ For a scan magnification factor $\rm M_{SC}=1.9.$ In the above mentioned range of $\rm V_{g9-g2}$ the vertical deflection factor will vary approximately $\pm\,5\%.$
- 10) The sensitivity at a deflection of less than $75\,\%$ of the useful scan will not differ from the sensitivity at a deflection of $25\,\%$ of the useful scan by more than the indicated value.
- 11) A ractangle of 98 mm x 58.2 mm is concentrically aligned with the internal graticule of the tube. With optimum corrections applied, the edges of a raster will fall between this rectangle and the boundary lines of the internal graticule.

December 1974 | 127

CORRECTIONS COILS

The tube is provided with a coil unit consisting of:

- 1. A pair of coils (No.1 and 2), with approx. 220 Ω resistance per coil, for a) correction of the orthogonality of the x- and y-traces so that the angle between these traces at the centre of the screen can be made exactly 90° .
 - b) vertical shift of the scanned area.
- 2. A single coil (No.3) with approx. 550 Ω resistance, for image rotation (alignment of the x-trace with the x-lines of the graticule).

Orthogonality and shift

The change in the angle between the traces and the shift of the scanned area will be proportional to the algebraic sum and the algebraic difference of the currents in the coils No.1 and 2.

Under typical operating conditions and with the coil unit closely surrounded by a mu-metal shield, the currents required are max. 5 mA per degree of angle correction and max. 2 mA per millimeter shift. The supply circuit for these coils should be so designed that in each coil a maximum current of 20 mA, with either polarity, can be produced.

If a wider mu-metal shield is used the above-mentioned values have to be multiplied by a factor K (1 < K < 2) the value of which depends on the dimensions of the shield and approaches 2 for the case no shield is present.

Image rotation

Under typical operating conditions, a current of max. 45 mA will be required for the alignment.

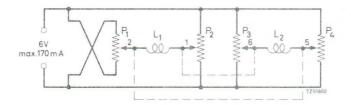
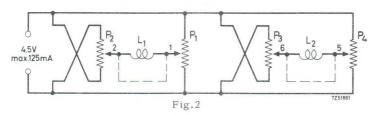
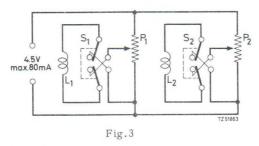



Fig.1

With the above circuit almost independent control for shift and angle correction is achieved. This facilitates the correct adjustment to a great extent.


The dissipation in the potentiometers can be reduced considerably if the requirement of independent controls is dropped.

 P_1 , P_2 potentiometers 220 Ω , 1 watt: ganged P_3 , P_4 potentiometers 220 Ω , 1 watt: ganged

A further reduction of the dissipation can be obtained by providing a commutator for each coil (see circuit fig.3).

The procedure of adjustment will then become more complicated but it should be kept in mind that a readjustment is necessary only when the tube has to be replaced.

 P_1 , P_2 potentiometers 220 Ω , 1 watt S_1 , S_2 commutators

A suitable circuit for the image rotating coil is given in fig.4.

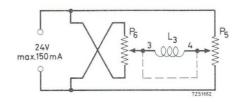


Fig.4

P5, P6 potentiometers 500 Ω , 3 watt: ganged

The following procedure of adjustment is recommended

- a. Align the x-trace with the graticule by means of the image rotating coil.
- b. With the tube fully scanned in the vertical direction, the image has to be shifted so that the graticule is fully covered. With the circuit according to fig.1 this is done by means of the ganged potentiometers P_1 and P_4 .
- c. Adjustment of orthogonality by means of the ganged potentiometers P_2 and P_3 . A slight readjustment of P_1 and P_4 may be necessary afterwards.
- d. Readjustment of the image rotation if necessary.

With a circuit according to fig.2 or 3 these corrections have to be performed by means of successive adjustments of the currents in the coils.

The most convenient deflection signal is a square waveform permitting an easy and fairly accurate visual check of orthogonality.

ILLUMINATION OF THE GRATICULE

To illuminate the internal graticule a light conductor (e.g. of perspex) should be used. In order to achieve the most efficient light conductance, the holes for the lamps and the edge adjacent to the tube should be polished, and the distance between the perspex plate and the tube should be as small as possible. It is advisable to apply reflective material to the outer circumference and, if possible, also to the upper and lower faces of the light conductor. The thickness of the conductor should not exceed 3 mm, and its position relative to the frontplate of the tube should be adjusted for optimum illumination of the graticule lines.

14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed

QUICK REFER	ENCE DATA		
Final accelerator voltage	Vg7(l)	10	kV
Display area		100 x 80	mm^2
Deflection coefficient, horizontal	M_X	15,5	V/cm
vertical	M_y	4, 2	V/cm

SCREEN: Metal backed phosphor

	Colour	Persistence
D14-120GH	green	medium short

Useful screen area		>	100 x 80	mm^2
Useful scan at $V_{g7(\ell)}/V_{g2,g4} = 6,7$, horizontal	>	100	mm
	voution!	_	00	

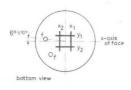
vertical mm Spot eccentricity in horizontal and vertical directions mm

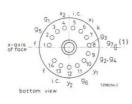
HEATING: Indirect by a.c. or d.c.; parallel supply

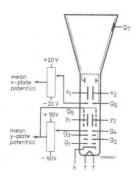
Heater voltage 6,3 Heater current 300 mA If

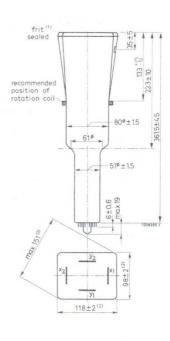
MECHANICAL DATA

Dimensions and connections


See also outline drawing


Overall length (socket included) 385 mm


Face dimensions < 100 x 120 mm


Net mass approx. 900 14-pin all-glass Base

Dimensions in mm

- (1) The centre of the contact is located within a square of 10 mm x 10 mm around the true geometrical position.
- (2) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.

Mounting position any

The tube should not be supported by the base alone; under no circumstances should the socket be allowed to support the tube.

Accessories

Socket (supplied with tube)
Final accelerator contact connector
Mu-metal shield

type 55566 type 55563A type 55581 FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates

symmetrical

y plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

 $90^{\circ} \pm 1^{\circ}$

Angle between x trace and the horizontal axis of the face $< 5^{\circ}$ 1).

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, adjusted for optimum spot size at a beam current I_{ℓ} = 10 μA .

Line width at the centre of the screen	1. w.	0,40	mm
over the whole screen area	1.w. av. <	0,45	mm

CAPACITANCES

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x1(x2)}$	6,5	pF	
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x2(x1)}$	6,5	pF	
y_1 to all other elements except y_2	$C_{y1(y2)}$	5,0	pF	
\mathbf{y}_2 to all other elements except \mathbf{y}_1	$C_{y2(y1)}$	5,0	pF	
\mathbf{x}_1 to \mathbf{x}_2	C_{x1x2}	2, 2	pF	
y ₁ to y ₂	C_{y1y2}	1,7	pF	
Control grid to all other elements	C_{g1}	5,5	pF	
Cathode to all other elements	C_k	4,5	pF	

¹⁾ To align the x trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 ampere turns for the indicated maximum rotation of 50 and should be positioned as indicated in the drawing.

D14-120GH

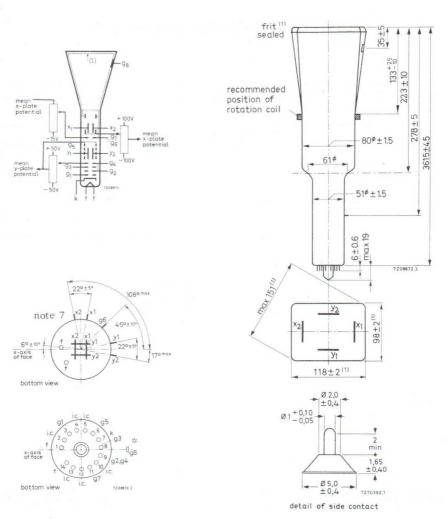
			-	
TYPICAL OPERATING CONDITIONS				
Final accelerator voltage	$V_{g7(\ell)}$		10	kV
Interplate shield voltage Geomrty control voltage	V_{g6} ΔV_{g6}		1500 ±15	V V 1)
Deflection plate shield voltage	V_{g5}		1500	V 2)
Focusing electrode voltage	V_{g3}	250 to	350	V
First accelerator voltage Astigmatism control voltage	V_{g2} , $g4$ ΔV_{g2} , $g4$		1500 ±50	V V ³)
Control voltage for visual extinction of focused spot	v_{g1}	-20 to	-60	V
Grid drive for 10 µA screen current	8	approx.	12	V
Deflection coefficient, horizontal	M_X	<	15,5 16	V/cm V/cm
vertical	M_y	<	4, 2 4, 6	V/cm V/cm
Deviation of linearity of deflection		<	2	% ⁴)
Geometry distortion		See note	e 5	
Useful scan, horizontal vertical		> >	100 80	mm mm
LIMITING VALUES (Absolute max. rating system)				
Final accelerator voltage	$v_{g7(\ell)}$	max. min.	11 9	kV kV
Interplate shield voltage and geometry control electrode voltage	V_{g6}	max.	2200	V
Deflection plate shield voltage	V_{g5}	max.	2200	V
Focusing electrode voltage	V_{g3}	max.	2200	V
First accelerator and astigmatism control electrode voltage	V _{g2} , g4	max. min. max.	2200 1350 200	V V
Control grid voltage	$-V_{g1}$	min.	0	V
Cathode to heater voltage	${}^{ m V}_{ m kf}$	max.	125 125	V V
Voltage between astigmatism control electrode and any deflection plate	${^{ m V}_{ m g4/x}}_{ m V_{ m g4/y}}$	max.	500 500	V V
Grid drive, average	5.77	max.	20	V
Screen dissipation	W_{ℓ}	max.	8	mW/cm^2
Ratio $V_{g7(\ell)}/V_{g2}$, g4	$V_{g7(\ell)}/V_{g4}$	max.	6,7	
Control grid circuit resistance	Rgl	max.	1	$M\Omega$
Notes see next page.				

Notes

- 1. This tube is designed for optimum performance when operating at a ratio V_{g7(R)}/V_{g2, g4} = 6,7. The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential). A negative control voltage will cause some pincushion distortion and less background light, a positive control voltage will give some barrel distortion and a slight increase of background light.
- 2. The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
- 3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5. A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

 $14\ \mathrm{cm}$ diagonal, rectangular flat-faced oscilloscope tube with mesh and metal backed screen. The tube has side connections to the x- and y-plates, and is intended for use in transistorized oscilloscopes up to a frequency of $50\ \mathrm{MHz}$.

QUICK REFERENCE	E DATA		
Final accelerator voltage	$V_{g_8(\ell)}$	1,0	kV
Display area	100	x . 80	mm^{2}
Deflection coefficient, horizontal	M_X	15,5	V/cm
vertical	M_y	4,2	V/cm


SCREEN: Metal backed phosphor

	Colour	Persistence
D14-121GH	green	medium short

Useful screen area		> 100	x 80	mm ²
Useful scan at $V_{g8(\ell)}/V_{g2}$,	g4 = 6, 7, horizontal	>	100	mm
	vertical	>	80	mm
Spot eccentricity in horizon vertical directions	ntal and	<	6	mm
HEATING				
Indirect by a.c. or d.c.; p	arallel supply			
Heater voltage		$v_{\mathbf{f}}$	6,3	V
Heater current		$I_{\mathbf{f}}$	300	mA

MECHANICAL DATA

Dimensions in mm

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than $2\ \mathrm{mm}$.
- * The centre of the contact is located within a square of 10 mm x 10 mm around the true geometrical position.

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

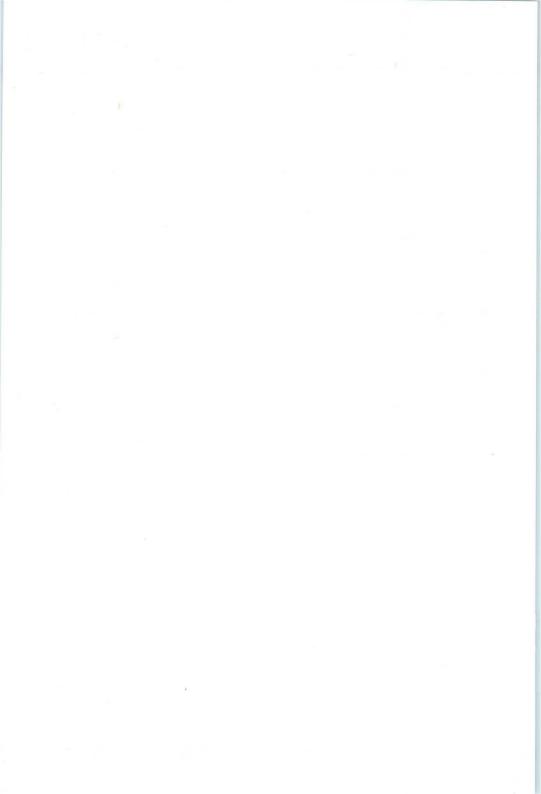
Dimensions and connection					
Dimensions and connection					
See also outline drawing Overall length (socket inclu	ided)		<	385	mm
Face dimensions			< 100 x	120	mm
Net mass			approx.	900	g
Base			14-pin al	l glass	
Accessories					
Socket (supplied with tube)			type	55566	
Final accelerator contact of Mu-metal shield	onnector		type type	55563 <i>A</i> 55581 <i>A</i>	
CAPACITANCES					
x ₁ to all other elements ex	cept x ₂	C_{x1}	(x2)	5,5	pF
x2 to all other elements ex	cept x ₁	C_{X2}	2(x1)	5,5	pF
y ₁ to all other elements ex	cept y ₂	C_{y1}	(y2)	4	pF
y ₂ to all other elements ex	cept y ₁	C_{y2}	2(y1)	4	pF
x1 to x2		C_{x1}	lx2	2, 2	pF
y ₁ to y ₂		C_{y1}	ly2	1,7	pF
Control grid to all other el	ements	C_{g1}	L	5,5	pF
Cathode to all other eleme	nts	$\mathbf{c}_{\mathbf{k}}$		4,5	pF
FOCUSING	electrostatic				
DEFLECTION	double electrostatic				
x plates	symmetrical				
y plates	symmetrical				
	eflection capabilities of the tube on beam; hence a low impedance				
Angle between x and y trac	es	90 :	± 10		
Anglr between x trace and	the horizontal axis of the face	< 5	5 ⁰ 1)		
LINE WIDTH					
Measured with the shrinki	ng raster method under typical	opera	ating condi	tions, a	idjusted
for optimum spot size at a		1		0.40	100.000
Line width at screen centr		1. w 1. w	7. 7. av. <	0, 40 0, 45	mm

Notes see last page.

TYPICAL OPERATING CONDITIONS

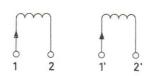
Final accelerator voltage	$V_{g_8}(l)$		10	kV
Geometry-control electrode voltage	V_{g7}	1500	± 100	V^2
Post deflection and interplate shield voltage	Vg6		1500	V
Background illumination control voltage	$\Delta V_{g_6}^{80}$	0	to -15	V^2)
Deflection plate shield voltage	v_{g5}^{so}		1500	$V_3)$
Focusing electrode voltage	V_{g_3}	250	to 350	V
First accelerator voltage	$v_{g_2,g_4}^{s_3}$		1500	V
Astigmatism control voltage	$\Delta V_{g_2,g_4}$		±50	V^4)
Control grid voltage for extinction	82.04			
of focused spot	v_{g_1}	-20	to -60	V
Grid drive for 10 μA screen current	81	approx.	12	V
Deflection coefficient, horizontal	M	av.	15,5	V/cm
Beneetion Coefficient, nortzontal	M_X	<	16	V/cm
vertical	M	av.	4,2	V/cm
vertical	M_y	<	4,6	V/cm
Deviation of linearity of deflection		<	2	% 5)
Geometry distortion		See	note 6	
Useful scan, horizontal		>	100	mm
vertical		>	80	mm

LIMITING VALUES (Absolute max. rating system)


Final accelerator voltage	$V_{g_8(\ell)}$	max. min.	11	kV kV
Post deflection and interplate shield vo	ltage		,	K V
and geometry control electrode voltage	V_{g7} , V_{g6}	max.	2200	V
Deflection plate shield voltage	$ \begin{array}{ccc} \text{ge} & \text{V}_{g7}, \text{V}_{g6} \\ \text{V}_{g5} & \text{V}_{g5} \end{array} $	max.	2200	V
Focusing electrode voltage	V_{g_3}	max.	2200	V
First accelerator and astigmatism control electrode voltage		max.	2200	V
control electrode voltage	v_{g_2,g_4}	min.	1350	V
Control grid voltage	-V	max.	200	V
Control grid voltage	$-v_{g_1}$	min.	0	V
Cathode to heater voltage	v_{kf}	max.	125	V
Cathode to heater voltage	-V _{kf}	max.	125	V
Voltage between astigmatism control				
electrode and any deflection plate	$V_{g_A/x}$	max.	500	V
	$v_{g_4/x}$ $v_{g_4/y}$	max.	500	V
Grid drive, average	04.	max.	20	V
Screen dissipation	W_{ℓ}	max.	8	mW/cm^2
Ratio Vg8(1)/Vg2,g4	$v_{g_8(\ell)}v_{g_2,g_4}$	max.	6,7	
Control grid circuit resistance	R _{g1}	max.	1	$M\Omega$

For notes see next page.

NOTES


- 1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp. turns for the indicated max. rotation of 5° and should be positioned as indicated on the drawing.
- ²) This tube is designed for optimum performance when operating at a ratio $Vg_8(\iota)/Vg_2,g_4$ = 6,7 The geometry control voltage Vg_7 should be adjusted within the indicated range (values with respect to the mean x-plate potential). A negative control voltage on g_6 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light. By the use of the two voltages, Vg_6 and Vg_7 , it is possible to find the best compromise between background light and raster distortion.
- 3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x- and y-plate potentials should be equal for optimum spot quality.
- 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6) A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.
- 7) To avoid damage to the side contacts the narrower end of the Mu-metal shield should have an internal diameter of not less than 64 mm.

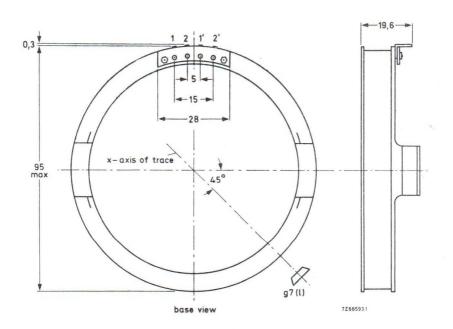
December 1974 141

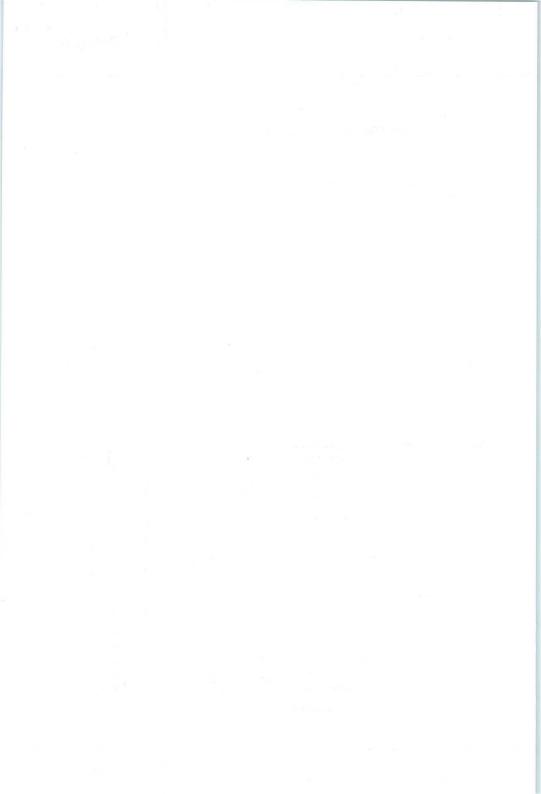
This type is equivalent with type D14-120GH but provided with a rotation coil as indicated in note 1 of D14-120GH.

COIL

Number of turns

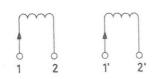
Number of turns


Resistance of coils


1 - 2 1' - 2'

1 - 2 1' - 2' 850 turns

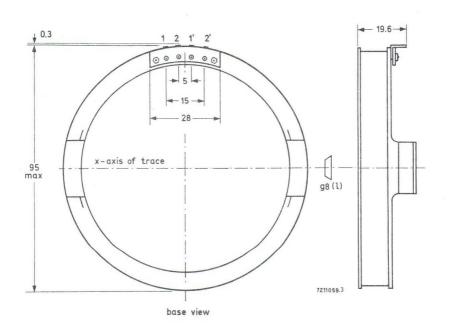
850 turns

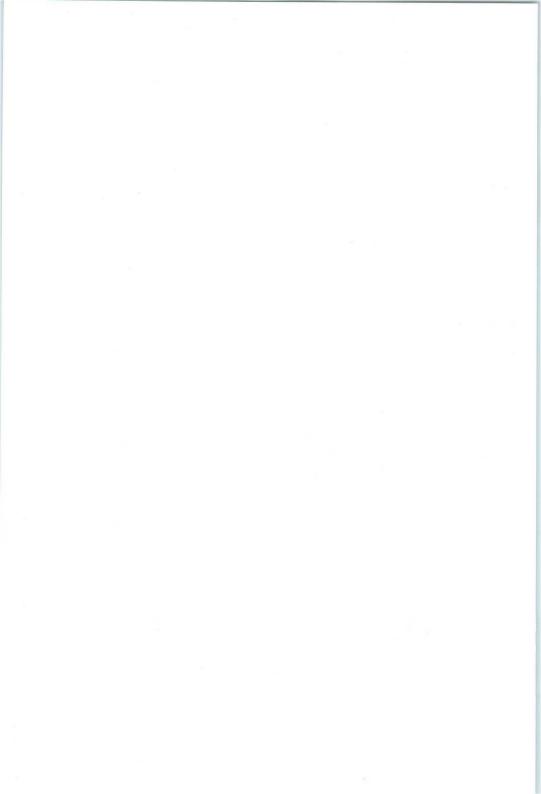

360 Ω + 10% 375 Ω 10%

This type is equivalent with type D14-121GH but provided with a rotation coil as indicated in note 1 of D14-121GH.

COIL

Number of turns


Resistance of coils


1 - 2 1' - 2'

 $\frac{1}{1'} - \frac{2}{2'}$

850 turns 850 turns

360 Ω (± 10%) 375 Ω (± 10%)

14 cm diagonal, rectangular flat faced oscilloscope tube with mesh and metal-backed screen. The tube has side connections to the x and y-plates and an internal graticule.

QUICK REFEREN	ICE DATA		
Final accelerator voltage	$V_{g8(\ell)}$	10	kV
Display area		100 x 80	mm^2
Deflection coefficient, horizontal	M_X	15,2	V/cm
vertical	M_{y}	4,1	V/cm

SCREEN: Metal-backed phosphor

		Colour	Persi	istence	
	D14-162GH/09	green	medium	n-short	
Useful screen	area		>	100 x 80	mm^2
Useful scan at	$V_{g8(\ell)}/V_{g2,g4} = 6,7$	7 , horizontal	>	100	mm
		vertical	>	80	mm
Spot eccentrici	ty in horizontal dire	ction	<	6	mm

The x-trace can be aligned with the x-lines of the graticule by means of correction coils fitted around the tube by the manufacturer (see last page but one).

HEATING: Indirect by a.c. or d.c.; parallel supply

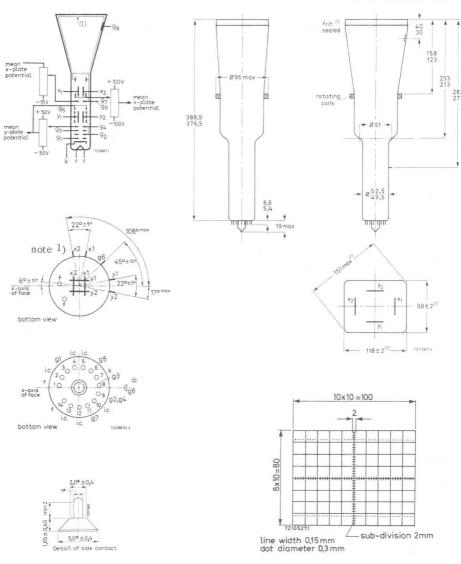
Heater voltage	$ m V_{f}$	6,3	V
Heater current	If	300	mA

MECHANICAL DATA

Dimensions and connections

Overall length (socket included)

See also outline drawing


Face dimensions	<	100 x 120	mm

Net mass approx. 1200 g

mm

407,5

- The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- * The centre of the contact is situated within a square of 10 mm x 10 mm around the true geometrical position.

1)

Base

14 pin all glass

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket (supplied with tube)

type 55566

Final accelerator contact connector

type 55563A type 55585

Mu-metal shield

FOCUSING electrostatic

DEFLECTION

double electrostatic

x-plates

symmetrical

y-plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces 900 ± 10

Angle between x-trace and the horizontal axis of the face 0° See "Correction Coils".

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell} = 10 \, \mu A$. Line width at the centre of the screen

1. w.

Ck

0.3 mm

4

CAPACITANCES

x1 to all other elements except x2 5,5 $C_{x1(x2)}$ pF x2 to all other elements except x1 $C_{x2(x1)}$ 5,5 pF y1 to all other elements except y2 3,5 $C_{v1(v1)}$ pF

 $C_{y2(y1)}$ y2 to all other elements except y1 3,5 pF x1 to x2 C_{x1x2} pF

 C_{v1v2} pF 1,6 y1 to y2

Control grid to all other elements 5,5 pF C_{g1} Cathode to all other elements

pF

	TYPICAL OPERATING CONDITIONS						
	Final accelerator voltage		Vg8(1)		10	kV	
	Geometry control electrode voltage		Vg7	1500 ±	100	V	2)
	Post deflection and interplate shield voltage Background illumination control voltage	ge	V _{g6} Δ V _{g6}		1500 -15	V V	2)
	Deflection plate shield voltage		Vg5		1500	V	3)
	Focusing electrode voltage		V_{g3}	450 to	550	V	
	First accelerator voltage Astigmatism control voltage		$V_{g2,g4}$ $\Delta V_{g2,g4}$	x	1500 ±50	V V	4)
	Control grid voltage for visual extinction	of focused spot	V _{g1}	-30 to	-70	V	
	Grid drive for 10 µA screen current		0	approx.	20	V	
	Deflection coefficient, horizontal		M_X	<	15, 2 16	V/cr V/cr	
	vertical		My	<	4, 1 4, 4	V/cr V/cr	n
	Deviation of linearity of deflection			<	2	%	5)
	Geometry distortion			See	note 6		
	Useful scan, horizontal vertical			> >	100 80	mm mm	
	LIMITING VALUES (Absolute max. rating	system)					
	Final accelerator voltage	$V_{g8(\ell)}$	max. min.		12 9	kV kV	
	Post deflection and interplate shield voltage and geometry control electrode voltage	ge V _{g7} , V _{g6}	max.		2200	V	
	Deflection plate shield voltage	V_{g5}	max.		2200	V	
	Focusing electrode voltage	V_{g3}	max.		2200	V	
	First accelerator and astigmatism control electrode voltage	_	max. min.		2200 1350	V V	
	Control grid voltage	-Vg1	max. min.		200	V V	
	Cathode to heater voltage	Vkf	max.		125	V	
	Cathode to heater voltage	-V _{kf}	max.		125	V	
	Voltage between astigmatism control electrode and any deflection plate	$_{ m Vg4/x}^{ m Vg4/y}$	max.		500 500	V	
	Grid drive, average		max.		30	V	
	Screen dissipation	W_{ℓ}	max.		8	mW/	cm ²
	Ratio Vg8(ℓ)/Vg2, g4	Vg8(l)/Vg2,g4	max.		6,7		
	Control grid circuit resistance	Rg1	max.		1	$M\Omega$	
	Notes see next page.				1		
-				-	-	-	

NOTES

- 1) To avoid damage to the side contacts the narrower end of the mu-metal shield should have an internal diameter of not less than 64 mm.
- ²⁾ This tube is designed for optimum performance when operating at a ratio $V_{g8(\ell)}/V_{g2g4}$ $V_{g8(\ell)}/V_{g2,g4} = 6,7$. The geometry control voltage V_{g7} should be adjusted within the indicated range (values

with respect to the mean x-plate potential).

A negative control voltage on g_6 (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light.

By the use of two voltages, V_{g6} and V_{g7} , it is possible to find the best compromise between background light and raster distortion.

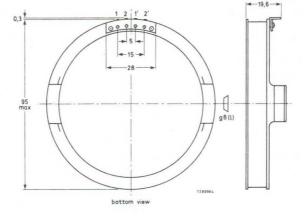
If a fixed voltage on ${\rm V}_{\rm g6}$ is required this voltage should be 10 V lower than the mean x-plate potential.

- 3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
- 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6) A graticule, consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied a a raster will fall between these rectangles.

CORRECTION COILS

General

The D14-1626H/09 is provided with a pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.



The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 50 ampere-turns are required for the maximum rotation of 5° . Both coils have 850 turns. This means that a current of < 30 mA per coil is required which can be obtained by using a 24 V supply when the coils are connected in series, or a 12 V supply when they are in parallel.

D14-162GH/09

Connecting the coils

The coils have been connected to the $4\ \mathrm{soldering}\ \mathrm{tags}$ as follows:

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh, sectioned y-plates, and metal-backed screen with internal graticule.

QUICK REFERENCE DATA				
Final accelerator voltage	Vg9(1)		20	kV
Display area	100	X	80	mm^2
Deflection coefficient, horizontal	M_X		9	V/cm
vertical	My		3	V/cn

SCREEN

Metal-backed phosphor

	colour	persistence
D14-240GH/37	green	medium short

Useful screen dimensions > 100 x - 80 mm

Spot eccentricity in horizontal and vertical directions < 6 mm

HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage $\begin{array}{ccc} V_{\rm f} & {\rm 6,3} & {\rm V} \\ \end{array}$ Heater current $\hspace{1.5cm} I_{\rm f} & 300 & {\rm mA} \end{array}$

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket included) < 385 mm

Face dimensions $< 120 \times 100 \text{ mm}$

MECHANICAL DATA (continued)

Net mass	~	900	8
Base	14 pin	, all glas	S
Accessories			
Socket (supplied with tube)	type	55566	
Side contact connector (12 required)	type	55561	
Final accelerator contact connector	note 1	(1	
Mu-metal shield	note 2)	

FOCUSING	electrostatic
----------	---------------

DEFLECTION	double electrostatic
x-plates	symmetrical
y-plates	symmetrical

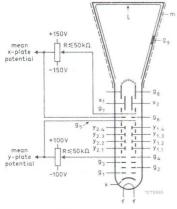
Angle between x and y traces	900

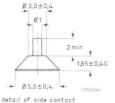
Angle between x-trace and x-axis of the internal graticule 00

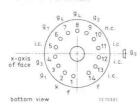
See also "Correction coils"

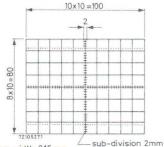
If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

CAPACITANCES

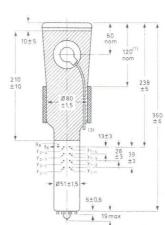

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$^{C}x_{1}(x_{2})$	4,5	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x_2(x_1)}$	4,5	pF
$\mathbf{y}_{1.1}$ to all other elements except $\mathbf{y}_{2.1}$	$C_{y_{1,1}(y_{2,1})}$	1,3	pF
$y_{2.1}$ to all other elements except $y_{1.1}$	$^{C}y_{2.1}(y_{1.1})$	1,3	pF
x_1 to x_2	$C_{x_1x_2}$	3	pF
y _{1.1} to y _{2.1}	Cy1.1y2.1	0,7	pF
Control grid to all other elements	c_{g_1}	5,5	pF
Cathode to all other elements	$C_{\mathbf{k}}$	4,5	pF

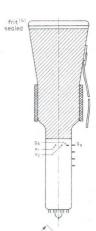

 $^{^{1}}$) The connection to the final accelerator electrode is made by means of an EHT cable attached to the tube.

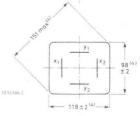

²⁾ The diameter of the mu-metal shield should be large enough to avoid damage to the side contacts.

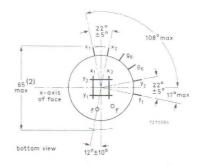

Dimensions in mm

DIMENSIONS AND CONNECTIONS








line width 0,15 mm dot diameter 0,3 mm

- (1) Recommended position of correction coils.
- (2) See page 2.
- (3) Length of cable approx. 460 mm.
- (4) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.

TYPICAL OPERATION

Conditions

Final accelerator voltage	$V_{g_9(l)}$	20	kV
Post deflection accelerator mesh electrode		2000	V
Geometry control electrode voltage	v_{g_7}	2000 ± 150	V = 1
Interplate shield voltage	v_{g_6}	2000	V $^2)$
Deflection plate shield voltage	v_{g_5}	2000	V $^3)$
Astigmatism control electrode voltage	v_{g_4}	2000 ± 100) V ⁴)
Focusing electrode voltage		00 to 800	V
First accelerator voltage	v_{g_2}	2000	V
Control grid voltage for visual extinction of focused spot	v _{g1} -55	to -110	V
Voltage on outer conductive coating	$v_{\rm m}$	2000	V
Performance			
Useful scan, horizontal vertical	> >	100	mm 5) mm
Deflection coefficient, horizontal	M _X <	9,9	V/cm V/cm
vertical	M _y <	3,3	V/cm V/cm
Line width	≈	0, 45	mm 6)
Writing speed	>	1,5	cm/ns^7)
Deviation of linearity of deflection	S	ee note 8	%
Geometry distortion	Se	ee note 9	

 $^{^{1}}$) The geometry control electrode voltage V_{g7} should be adjusted within the indicated range (values with respect to the mean x-plate potential).

Grid drive for 10 µA screen current

20

V

²⁾ The interplate shield voltage should be equal to the mean x-plate potential.

The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x-plate and y-plate potentials should be equal for optimum performance.

⁴⁾ The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.

⁵⁾ If the tube is operated at a ratio $V_g g(\ell)/V_g 5 < 10$, the useful scan may be smaller than 100 mm x 80 mm.

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube.

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$V_{g9(\ell)}$	max. min.	21 kV 15 kV
Post deflection acceleration mesh electrode voltage	V_{g8}	max.	2200 V
Geometry control electrode voltage	V_{g7}	max.	2400 V
Interplate shield voltage	V_{g6}	max.	2200 V
Deflection plate shield voltage	V_{g5}	max.	2200 V
Astigmatism control electrode voltage	V_{g4}	max. min.	2300 V 1800 V
Focusing electrode voltage	V_{q3}	max.	2200 V
First accelerator voltage	V_{g2}	max. min.	2200 V 1900 V
Control grid voltage	$-V_{g1}$	max. min.	200 V 0 V
Cathode to heater voltage positive negative	V _{kf}	max.	125 V 125 V
Voltage between astigmatism control electrode and any deflection plate	V _{g4/x}	max.	500 V
	$V_{g4/y}^{g1/\chi}$	max.	500 V
Grid drive, average		max.	30 V
Screen dissipation	Wg	max.	8 mW/cm ²
Ratio V_{g9}/V_{g5}	V_{g9}/V_{g5}	max. min.	10
Control grid circuit resistance	R _{a1}	max.	1 M Ω

- 6. Measured with the shrinking raster method in the centre of the screen, with corrections adjusted for optimum spot size, at a beam current of 10 μ A.
- 7. Writing speed measuring conditions:

Film Polaroid 410 (10 000 ASA)

Lens F 1/1,2

Object to image ratio 1/0,5

Modulation $\Delta V_{q1} = 55 V$

- 8. The deflection coefficient over each division will not differ more than 5% from that over any other division; all these deflection coefficients being measured per division along the axes.
- 9. A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73,6 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

CORRECTION COILS

On request a correction coil unit can be made available consisting of:

- 1. a pair of coils L1 and L2 which enable the angle between the x and y traces at the centre of the sceen to be made exactly 90° (orthogonality correction).
- a pair of coils L3 and L4 which enable the scanned area to be shifted up and down (vertical shift).
- 3. a coil L5 for image rotation which enables the alignment of the \boldsymbol{x} trace with the \boldsymbol{x} lines of the graticule.

Orthogonality (coils L1 and L2)

The current required under typical operating conditions with mu-metal shield being used is < 8 mA for complete correction of orthogonality.

The resistance of each coil is $\approx 160 \Omega$.

Shift (coils L3 and L4)

The current required under typical operating conditions with mu-metal shield being used is < 12 mA for a maximum shift of 5 mm.

The resistance of each coil is $\approx 160 \Omega$.

Image rotation (coil L5)

The image rotation coil is wound concentrically around the tube neck. Under typical operating conditions 27 ampere-turns are required for the maximum rotation of $5^{\tilde{0}}$. The coil has 1560 turns. This means that a current of < 18 mA is required. The resistance of the coil is $\approx 185~\Omega$.

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and read-out devices. This tube features a low heater power consumption.

QUICK REFERENCE DATA

Accelerator voltage	V _g 2, g4, g5 (ℓ)	2000	V
Display area		100 mm x 80	mm
Deflection coefficient			
horizontal	M×	23	V/cm
vertical	My	13,5	V/cm

The D14-251GH is equivalent to the type D14-252GH except for the following.

HEATING

Indirect by a.c. or d.c. *

Heater voltage $V_{\rm f}$ 6,3 \vee Heater current $I_{\rm f}$ 0,1 \wedge 0,1 \wedge

LIMITING VALUES (Absolute maximum rating system)

Cathode to heater voltage positive V_{kf} max. 100 V

negative -V_{kf} max. 15 V

CAPACITANCES

Cathode to all other elements C_k 2,5 pF

^{*} Not to be connected in series with other tubes.

14 cm diagonal rectangular flat-faced monoaccelerator oscilloscope tube primarily for use in inexpensive oscilloscopes and read-out devices. This tube features a 1,5 W cathode with short warm-up time (quick-heating cathode).

OUICK REFERENCE DATA

Accelerator voltage	Vg2, g4, g5 (ℓ) 2000	V
Display area	100 mm x 80	mm
Deflection coefficient		
horizontal	M _× 23	V/cm
vertical	M _y 13,5	V/cm

OPTICAL DATA

Screen	
phosphor type	
persistence	

persistence Useful screen dimensions

Useful scan horizontal

vertical Spot eccentricity in horizontal

and vertical directions HEATING

Indirect by a.c. or d.c. * Heater voltage

Heater current

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

approx. 1 kg

Vf

If

Base

14-pin all glass

GH, colour green medium short

≥ 100 mm x 80 mm

100 mm

80 mm

7 mm

6.3 V

0,24 A

^{*} Not to be connected in series with other tubes.

Dimensions and connections

See also outline drawing

Overall length (socket included)

333 mm

Face dimensions

<

121 x 100 mm

Accessories

Socket (supplied with tube)

type 55566

Mu-metal shield

type 55590

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x-plates

symmetrical

y-plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam; hence a low impedance deflection plate drive is desirable.

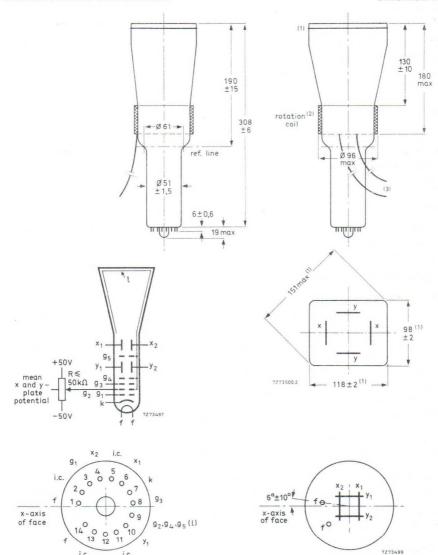
Angle between x and y-traces

900 ± 10

Angle between x-trace and horizontal axis of the face

see footnote

CAPACITANCES


x ₁ to all other elements except x ₂	C _{x1(x2)}	4,5 pF
x2 to all other elements except x1	C _{x2(x1)}	4,5 pF
y ₁ to all other elements except y ₂	C _{y1(y2)}	3,5 pF
y2 to all other elements except y1	Cy2(y1)	3 pF
x ₁ to x ₂	C _{x1x2}	2 pF
y ₁ to y ₂	C _{y1y2}	1,1 pF
Control grid to all other elements	C _{g1}	6 pF
Cathode to all other elements	c_k	2,7 pF

Note

The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 400 Ω . Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 30 mA at a required voltage of max. 12 V.

DIMENSIONS AND CONNECTIONS

Dimensions in mm

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- (2) The coil is fixed to the envelope by means of adhesive tape.

7273498

i.c.

bottom view

(3) The length of the connecting leads of the rotation coil is min. 350 mm.

bottom view

TYPICAL OPERATION

Conditions	(note	1)	
------------	-------	----	--

Accelerator voltage	Vg2, g4, g5(ℓ)	20	000 V	
Astigmatism control voltage	ΔV_{g2} , g4, g5(ℓ)	±	50 V	(note 2)
Focusing electrode voltage	V_{g3}	220 to 3	370 V	
Control grid voltage for visual extinction of focused spot	V_{g1}	< -	-65 V	
Performance				
Useful scan horizontal vertical		<i>> ></i>	100 mm 80 mm	
Deflection coefficient horizontal vertical	M_X		23 V/cm 25 V/cm 3,5 V/cm	
Line width	l.w.	< ≈ 0	15 V/cm 0,35 mm	(note 3)
Deviation of linearity of deflection		€	2 %	(note 4)

NOTES

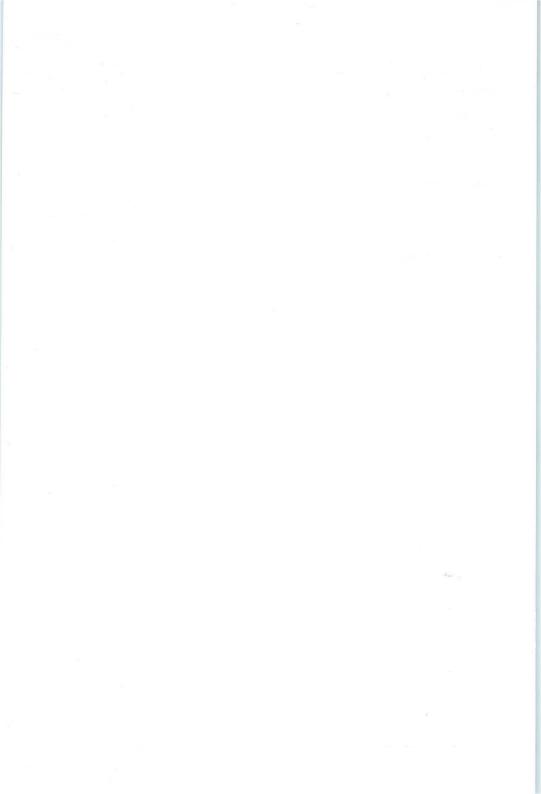
Geometry distortion

Grid drive for 10 µA screen current

1. The mean x-plate potential and the mean y-plate potential should be equal to $V_{g2,g4,g5(\ell)}$ (with astigmatism control voltage set to zero).

see note 5

10 V


- 2. When putting the tube into operation the astigmatism control voltage should be adjusted only once for optimum spot size in the centre of the screen. The control voltage will be within the stated range, provided the conditions of note 1 are adhered to.
- 3. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I $_{\chi}$ = 10 μ A.

As the construction of the tube does not permit a direct measurement of the beam current, this current should be determined as follows:

- a) under typical operating conditions, apply a small raster display (no overscan), adjust V $_{g1}$ for a beam current of approx. 10 μA and adjust V $_{g3}$ and V $_{g2,g4,g5}(\ell)$ for optimum spot quality at the centre of the screen.
- b) under these conditions, but without raster, the deflection plate voltages should be changed to: $V_{y1} = V_{y2} = 2000 \text{ V}; V_{x1} = 1300 \text{ V}; V_{x2} = 1700 \text{ V},$ thus directing the total beam current to x_2 . Measure the current on x_2 and adjust V_{g1} for $I_{x2} = 10 \mu\text{A}$.
- c) set again for the conditions under a), without touching the V_{g1} control. The screen current of the resulting raster display is now 10 μ A.
- d) focus optimally in the centre of the screen (do not adjust the astigmatism control) and measure the line width.
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5. A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster will fall between these rectangles.

LIMITING	VALUES	Absolute	mavimum	rating system)	
LIMITING	VALUES	Absolute	maximum	rating system)	

Accelerator voltage	٧ _{g2, g4, g5(٤)}	max. min.	2200 1500	-
Focusing electrode voltage	V_{g3}	max.	2200	V
Control grid voltage	$-V_{g1}$	max. min.	200	V
Cathode to heater voltage positive negative	V _{kf} -V _{kf}	max.	125 125	
Grid drive, average		max.	20	V
Screen dissipation	Wę	max.	3	mW/cm ²
Control grid circuit resistance	R _{g1}	max.	1	$M\Omega$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat faced oscilloscope tube with post-deflection acceleration mesh, primarily for use in compact oscilloscopes with 15 to 20 MHz bandwidth. This tube features a low heater consumption.

QUICK REFERENCE DATA

Final accelerator voltage	V _g 7(ℓ)	4	kV
Display area	1	00 mm x 80	mm
Deflection coefficient			
horizontal	M _×	19,5	V/cm
vertical	My	10,5	V/cm

The D14-261GH is equivalent to the type D14-262GH except for the following.

HEATING

Indirect by a.c. or d.c. *

Heater voltage

 V_{f}

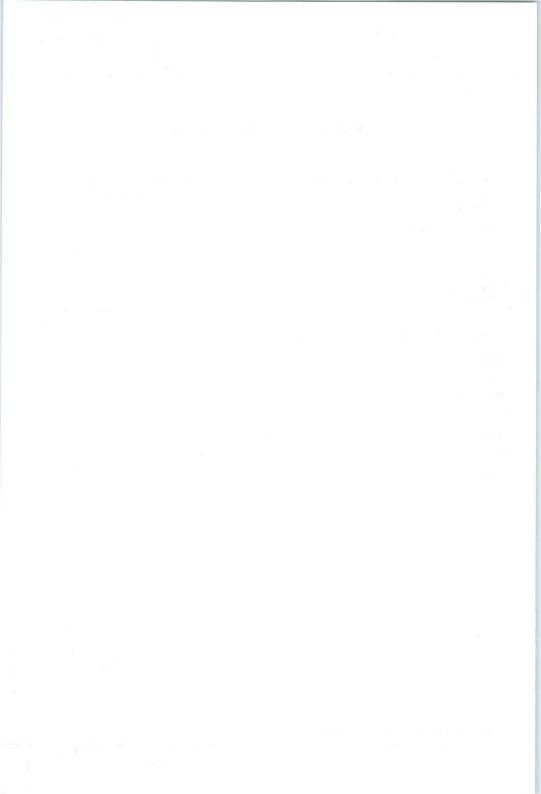
6,3 V

Heater current

If

0.1 A

LIMITING VALUES (Absolute maximum rating system)


Cathode to heater voltage

positive negative

100 V max. max.

15 V

^{*} Not to be connected in series with other tubes.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced oscilloscope tube with post-deflection acceleration mesh, primarily for use in compact oscilloscopes with 15 to 20 MHz bandwidth. This tube features a 1,5 W cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage	V _g 7(ℓ)	4	kV	
Display area	100	0 mm x 80	mm	
Deflection coefficient		10.5	11/	
horizontal	M _×		V/cm	
vertical	My	10,5	V/cm	

OPTICAL DATA

Screen

phosphor type persistence		
Useful screen dimensions	\geqslant	100 mm x 8
Useful scan		
horizontal	\geqslant	10
vertical	>	0

vertical	\geqslant	80 mm
Spot eccentricity in horizontal		
and vertical directions	€	6,5 mm

HEATING

Indianat burn a

munect by a.c. of d.c.		
Heater voltage	Vf	6,3 V
Heater current	If	0,24 A

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be

allowed to support the tube.	
Net mass	approx. 1 kg

Base 14-pin, all glass Final accelerator contact small ball

00 mm x 80 mm

100 mm

^{*} Not to be connected in series with other tubes.

Dimensions and connections

See also outline drawing

Overall length	\leq	333	mm
Face dimensions	≤ 100	x 120	mm ²

Accessories

Socket, supplied with tube	type 55566
Mu-metal shield	type 55591
Final accelerator contact connector	type 55569

FOCUSING

DEFLECTION

x-plates	symmetrical	
y-plates	symmetrical	
Angle between x and y-traces	90 ± 10	
Angle between x-trace and horizontal axis of the face	≤ 50	*

electrostatic

double electrostatic

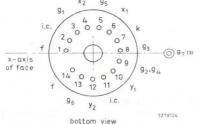
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

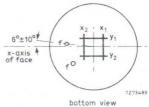
CAPACITANCES

C _{x1(x2)}	7	pF
$C_{\times 2(\times 1)}$	6,5	pF
$C_{y1(y2)}$	4	pF
C _{y2(y1)}	3,5	pF
C_{x1x2}	2,2	pF
Cy1y2	1,1	pF
C _{g1}	6,1	pF
C_k	2,7	pF
	C _{x2(x1)} C _{y1(y2)} C _{y2(y1)} C _{x1x2} C _{y1y2} C _{g1}	$\begin{array}{ccc} C_{x2(x1)} & 6,5 \\ C_{y1(y2)} & 4 \\ C_{y2(y1)} & 3,5 \\ C_{x1x2} & 2,2 \\ C_{y1y2} & 1,1 \\ C_{g1} & 6,1 \\ \end{array}$

Notes to the drawings on opposite page.

- 1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- 2. The coil is fixed to the envelope by means of adhesive tape.
- 3. The centre of the contact is situated within a square of 10 mm \times 10 mm around the true geometrical position.
- 4. The length of the connecting leads of the rotation coil is min. 350 mm.


^{*} The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 400 Ω . Under typical operating conditions, max. 30 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 30 mA at a required voltage of max. 12 V.

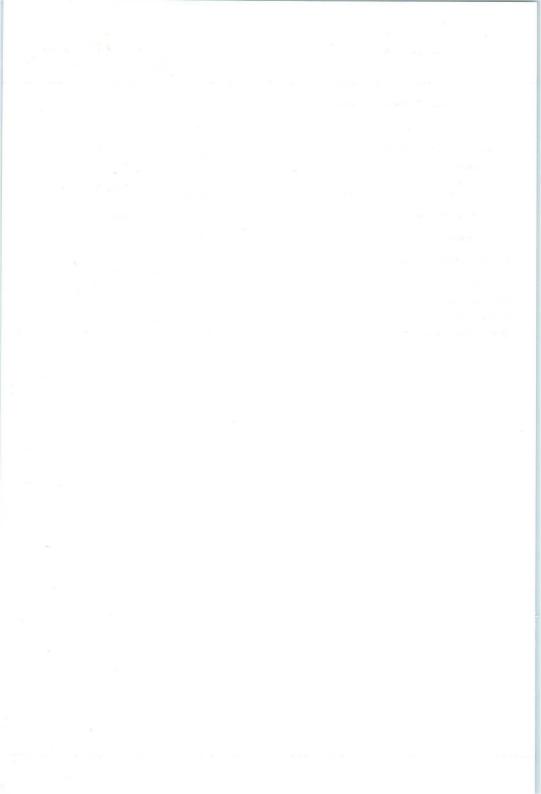

DIMENSIONS AND CONNECTIONS

For notes to the drawings see bottom of opposite page.

Dimensions in mm

TYPICAL OPERATION

Conditions


Final accelerator voltage	٧ _{g7(ℓ)}		4	kV	
Post deflection accelerator mesh electrode voltage	V_{g6}		2000	V	
Interplate shield voltage	V_{g5}		2000	V	(note 1)
First accelerator voltage	$V_{g2,g4}$		2000	V	
Astigmatism control electrode voltage	$\Delta V_{g2, g4}$		± 50	V	(note 2)
Focusing electrode voltage	V_{g3}	300 t	to 480	V	
Cut-off voltage for visual extinction					
of focused spot	$-V_{g1}$	30	to 70	V	
Performance					
Useful scan)	
horizontal vertical		≥	100 80	mm	(note 3)
Deflection coefficient			80	,,,,,,	
horizontal	M_{\times}		19.5	V/cm	
	^	<		V/cm	
vertical	M _V		10,5	V/cm	
	,	\leq	11,6	V/cm	
Line width	l.w.	\approx	0,35	mm	(note 4)
Deviation of deflection linearity		<	2	%	(note 5)
Grid drive for 10 μ A screen current	V_d	\approx	20	V	
Geometry distortion	see note 6				

NOTES

- 1. The interplate shield voltage should be equal to the mean x-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
- 2. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 3. The tube is designed for optimum performance when operating at a ratio $V_{q7(g)}/V_{q2, q4} = 2$. If this ratio is smaller than 2, the useful scan may be smaller than 100 mm x 80 mm.
- 4. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of 10 μ A.
- 5. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6. A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

LIMITING VALUE	ES (Abso	lute maximum	rating system)

Elimiting VALOED (Absolute maximali ruting system)				
Final accelerator voltage	$V_{g7(\ell)}$	max.	4,4	kV
Post deflection accelerator mesh electrode voltage	V_{g6}	max.	2200	V
Interplate shield voltage	V_{g5}	max.	2200	V
First accelerator and astigmatism control electrode voltage	V _{g2, g4}	max. min.		
Focusing electrode voltage	V_{g3}	max.	2200	V
Control grid voltage	$-V_{g1}$	max. min.		V V
Cathode to heater voltage				
positive negative	V _{kf}	max.		
Grid drive, averaged over 1 ms	V_d	max.	20	V
Screen dissipation	We	max.	3	mW/cm ²
Control grid circuit resistance	R _{a1}	max.	1	Ω M
	Final accelerator voltage Post deflection accelerator mesh electrode voltage Interplate shield voltage First accelerator and astigmatism control electrode voltage Focusing electrode voltage Control grid voltage Cathode to heater voltage positive negative Grid drive, averaged over 1 ms Screen dissipation	Final accelerator voltage $V_{g7}(\ell)$ Post deflection accelerator mesh electrode voltage V_{g6} Interplate shield voltage V_{g5} First accelerator and astigmatism control electrode voltage $V_{g2}, g4$ Focusing electrode voltage V_{g3} Control grid voltage $-V_{g1}$ Cathode to heater voltage positive V_{kf} negative V_{kf} Grid drive, averaged over 1 ms V_{d} Screen dissipation $V_{g7}(\ell)$	Final accelerator voltage $V_{g7}(\ell) \text{max.}$ Post deflection accelerator mesh electrode voltage $V_{g6} \text{max.}$ Interplate shield voltage $V_{g5} \text{max.}$ First accelerator and astigmatism control electrode voltage $V_{g2}, g4 \text{min.}$ Focusing electrode voltage $V_{g3} \text{max.}$ Control grid voltage $-V_{g1} \text{min.}$ Cathode to heater voltage $Positive Positive V_{kf} \text{max.}$ negative $-V_{kf} \text{max.}$ Grid drive, averaged over 1 ms $V_{d} \text{max.}$ Screen dissipation $V_{\ell} \text{max.}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed post-deflection acceleration mesh and metal-backed screen, primarily for use in compact oscilloscopes with 25 to 50 MHz bandwidth. This tube features a 1,5 W cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage	$V_{g8(Q)}$	10	kV
Display area		100 mm x 80	mm
Deflection coefficient horizontal vertical	M _× M _y		V/cm V/cm
OPTICAL DATA			
Screen phosphor type persistence		metal-backed p GH, colour gree medium short	
Useful screen dimensions		≥100 mm x 80	mm
Useful scan horizontal vertical			mm mm
Spot eccentricity in horizontal and vertical directions		≤ 6,5	mm
HEATING			
Indirect by a.c. or d.c.*			

Heater voltage

Vf Heater current 1f

MECHANICAL DATA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Net mass

approx. 1 kg

6.3 V

0.1 A

Base

14 pin, all glass

Final accelerator contact

small ball

^{*} Not to be connected in series with other tubes.

Dimensions and connections

See also outline drawing

Overall length

100 x 120 mm² (note 1) Face dimensions

343 mm

 \leq

double electrostatic

Accessories

type 55566 Socket, supplied with tube Mu-metal shield type 55592 Final accelerator contact connector type 55569

FOCUSING electrostatic

DEFLECTION

Angle between x-trace and horizontal axis of the face

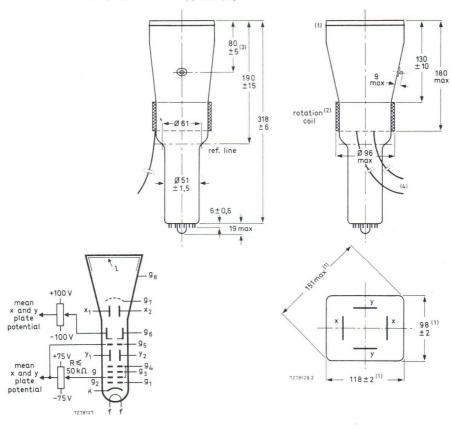
x-plates symmetrical y-plates symmetrical

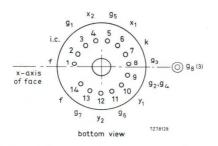
Angle between x and y-traces 90 ± 10 50 *

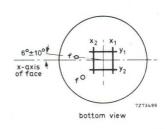
If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

CAPACITANCES

7 pF x₁ to all other elements except x₂ Cx1(x2) x2 to all other elements except x1 Cx2(x1) 7 pF y1 to all other elements except y2 4 pF C_{V1}(v2) y2 to all other elements except y1 4 pF C_{v2(v1)} x1 to x2 C_{x1x2} 2,2 pF y1 to y2 Cv1v2 1,3 pF Control grid to all other elements 6 pF C_a1 Cathode to all other elements Ck 2.7 pF


Notes to the drawings on opposite page.


- 1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- 2. The coil is fixed to the envelope by means of adhesive tape.
- 3. The centre of the contact is situated within a square of 10 mm x 10 mm around the true geometrical position.
- 4. The length of the connecting leads of the rotation coil is min. 350 mm.


The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the x-trace with the mechanical x-axis of the screen. The coil has 1000 turns and a resistance of max. 350 Ω . Under typical operating conditions, max. 35 ampere-turns are required for the max. rotation of 5°. This means the required current is max. 35 mA at a required voltage of max. 12 V.

DIMENSIONS AND CONNECTIONS

For notes to the drawings see bottom of opposite page.

TYPICAL OPERATION

Cinal appolarator valtage

Deviation of deflection linearity

Geometry distortion

Grid drive for 10 µA screen current

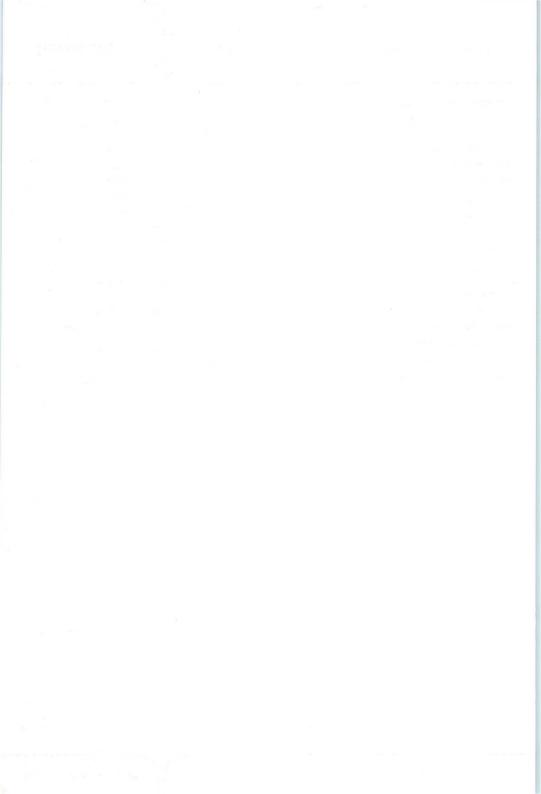
Conditions

Final accelerator voltage		∨g8(ℓ)	10	KV	
Post deflection accelerato	r mesh electrode voltage	V _g 7	2000	V	
Geometry control electro	de voltage	V_{g6}	2000 ± 100	V	(note 1)
Interplate shield voltage		V_{g5}	2000	V	(note 2)
First accelerator voltage		V _{g2, g4}	2000	V	
Astigmatism control elect	rode voltage	$\Delta V_{g2, g4}$	± 75	V	(note 3)
Focusing electrode voltag	e	V_{g3}	400 to 560	V	
Cut-off voltage for visual of focused spot	extinction	-V _{g1}	25 to 70	٧	
Performance					
Useful scan horizontal vertical			≥ 100 ≥ 80	7	(note 4)
Deflection coefficient horizontal		M_{\times}	≤ 14	V/cm V/cm	
vertical		My		V/cm V/cm	
Line width		l.w.	≈ 0,38	mm	(note 5)

Vd

see note 7

(note 6)


20 V

NOTES

- 1. The geometry control electrode voltage V₀₆ should be adjusted within the indicated range (values with respect to the mean x-plate potential).
- 2. The interplate shield voltage should be equal to the mean x-plate potential. The mean x-plate and y-plate potentials should be equal for optimum spot quality.
- 3. The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4. The tube is designed for optimum performance when operating at a ratio $V_{q8(\ell)}/V_{q2, q4} = 5$. If this ratio is smaller than 5, the useful scan may be smaller than 100 mm x 80 mm.
- 5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of 10 μ A.
- 6. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 7. A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, the edges of a raster will fall between these rectangles.

LIMITING VALUES (Absolute maximum rating system)

Final accelerator voltage	$V_{g8(\ell)}$	max.	12	kV
Post deflection accelerator mesh electrode voltage	V_{g7}	max.	2200	V
Geometry control electrode voltage	V_{g6}	max.	2200	V
Interplate shield voltage	V_{g5}	max.	2200	V
Accelerator voltage	V _{g2, g4}	max. min.	2200 1800	
Focusing electrode voltage	V_{g3}	max.	2200	V
Control grid voltage	$-V_{g1}$	max. min.	200	V
Cathode to heater voltage positive negative	V _{kf}	max.	125 125	
Grid drive, averaged over 1 ms	V_d	max.	20	V
Screen dissipation	WQ	max.	8	mW/cm ²
Voltage between astigmatism control electrode and any deflection plate	V _{g4/x} V _{g4/y}	max.	500 500	
Control grid circuit resistance	R _{g1}	max.	1	Ω M

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal rectangular flat-faced oscilloscope tube with domed mesh and metal-backed screen with internal graticule. The tube has side connections to the x and y-plates, and is intended for use in compact oscilloscopes with up to 150 MHz bandwidth. This tube features a 1,5 W cathode with short warm-up time (quick-heating cathode).

QUICK REFERENCE DATA

Final accelerator voltage

Heater current

Titlal accelerator voltage	∨g8(ℓ)	10,5 KV
Display area		100 x 80 mm ²
Deflection coefficient horizontal vertical	M _× M _y	8,7 V/cm 4,7 V/cm
OPTICAL DATA		
Screen type persistence	metal-bac GH, colo medium s	0
Useful screen dimensions	>	100 x 80 mm ²
Useful scan horizontal vertical	<i>> ></i>	100 mm 80 mm
Spot eccentricity in horizontal and vertical directions	€	6,5 mm
HEATING		
Indirect by a.c. or d.c.; parallel supply		
Heater voltage	Vf	6,3 V

V-0/01

165 kV

0,24 A

MECHANICAL DATA

Dimensions and connections

See outline drawings

Overall length (socket included)

Face dimensions

Net mass

14 pin, all glass Base

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Accessories

Socket, supplied with tube

'Side contact connector (7 required)

Final accelerator contact connector

type 55572

≤ 397 mm

approx. 1 kg

≤ 100 x 120 mm²

type 55561

connection to final

accelerator electrode is made via an EHT cable

attached to the tube

FOCUSING electrostatic

DEFLECTION double electrostatic

x-plates symmetrical

symmetrical y-plates

90 ± 10 Angle between x and y-traces

≤ 50 * Angle between y-trace and y-axis of the internal graticule

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

^{*} The tube is provided with a rotation coil, concentrically wound around the tube neck, enabling the alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650 Ω . Under typical operating conditions, a maximum of 40 ampere-turns are required for the maximum rotation of 5°. This means the required current is 20 mA maximum at a required voltage of 13 V.

CAPACITANCES

x ₁ to all other elements except x ₂	C _{×1} (×2)	5 pF
x2 to all other elements except x1	C _{x2(x1)}	5 pF
y ₁ to all other elements except y ₂	Cy1(y2)	1,7 pF
y ₂ to all other elements except y ₁	Cy2(y1)	2 pF
x ₁ to x ₂	C _{x1x2}	3 pF
y ₁ to y ₂	Cy1y2	1,6 pF
Control grid to all other elements	C _{g1}	6 pF
Cathode to all other elements	Ck	2,7 pF
Focusing electrode to all other electrodes	C _{a3}	5 pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

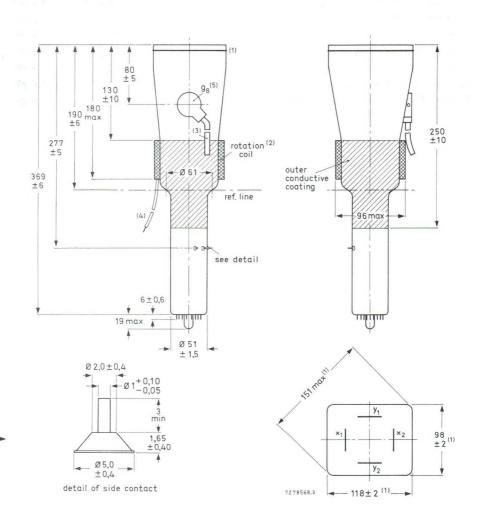


Fig. 1 Outlines; for notes see next page.

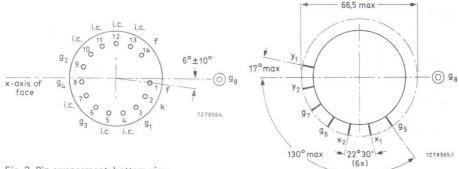


Fig. 2 Pin arrangement; bottom view.

Fig. 3 Side-contact arrangement; bottom view.

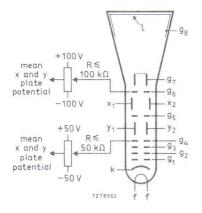


Fig. 4 Electrode configuration.

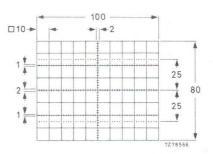


Fig. 5 Internal graticule. Line thickness = 0,2 mm; dot diameter = 0,4 mm.

Notes to the drawing on opposite page.

- 1. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- 2. The coil is fixed to the envelope by means of adhesive tape.
- 3. EHT cable; minimum length is 530 mm.
- Connection cable, comprising two wires for connection of the rotation coil, and one green wire for earthing the outer conductive coating. Minimum cable length is 400 mm.
- The centre of the final accelerator contact is situated within a square of 10 mm x 10 mm around the true geometrical position.

TYPICAL OPERATION

Conditions

Final accelerator voltage	Vg8(化)		16,5	kV	
Post deflection accelerator mesh electrode voltage	V_{q7}		2200	V	
Geometry control electrode voltage	V _{g6}	2200 ±	100	V	(note 1)
Interplate shield voltage	V_{g5}		2200	V	(note 2)
First accelerator voltage	V_{g2}		2200	V	
Astigmatism control electrode voltage	V _{g4}	2200	± 50	V	(note 3)
Focusing electrode voltage	V_{g3}	620 to	800	V	
Cut-off voltage for visual extinction of focused spot	-V _{g1}	60 to	110	٧	
Performance					
Useful scan horizontal vertical		\geqslant	100	mm mm	(note 4)
Deflection coefficient					
horizontal	M_{\times}	<		V/cm V/cm	
vertical	My	«		V/cm V/cm	
Line width	l.w.	typ.	0,37	mm	(note 5)
Grid drive for 10 μ A screen current	V_d	approx.	30	V	
Geometry distortion		see note	6		
Deviation of deflection linearity		3%; see	note	7	

NOTES

- The geometry control electrode voltage V_{g6} should be adjusted within the indicated range (values with respect to the mean x-plate potential).
- 2. The interplate shield voltage should be equal to the mean x-plate and y-plate potentials for optimum spot quality.
- The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4. The tube is designed for optimum performance when operating at a ratio $V_{g8(\ell)}/V_{g2}$ = 7,5. If this ratio is smaller, the useful scan may be smaller than 100 mm x 80 mm.
- 5. Measured with the shrinking raster method in the centre of the screen with corrections adjusted for optimum spot size, at a beam current of 10 μ A.
- 6. A graticule consisting of horizontal and vertical line pairs according to Fig. 6, is aligned with the electrical x-axis of the tube. With optimum corrections applied (including orthogonality correction), any horizontal or vertical trace will fall between these line pairs.
- 7. Deviation of linearity is defined as the proportional deviation of the deflection coefficient over any division on the x-axis and y-axis from the average values over the central eight (horizontal) and central six (vertical) divisions respectively.

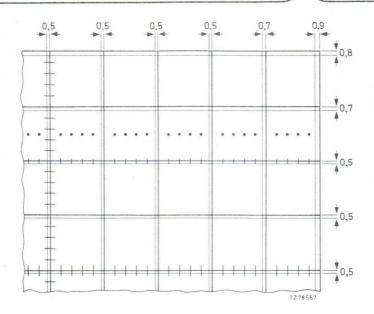


Fig. 6 Quarter of graticule with horizontal and vertical line pairs, see note 6 on opposite page.

D14-302GH/93

LIMITING VALUES (Absolute maximum rating system)				
Final accelerator voltage	$V_{g8(\ell)}$	max.	18	kV
Post deflection accelerator mesh electrode voltage	V_{g7}	max.	2500	V
Geometry control electrode voltage	V_{g6}	max.	2500	V
Interplate shield voltage	V_{g5}	max.	2500	V
Astigmatism control electrode voltage	V_{g4}	max.	2500	V
Focusing electrode voltage	V_{g3}	max.	2500	V
First accelerator voltage	V_{g2}	max.	2500	V
Control grid voltage	-V _{g1}	max. min.	200	V V
Cathode to heater voltage positive negative	V _{kf} –V _{kf}	max.	125 125	
Voltage between astigmatism control electrode and any deflection plate	V _{g4/x} V _{g4/y}	max.	500 500	
Grid drive, averaged over 1 ms	Vd	max.	20	V
Screen dissipation	WQ	max.	8	mW/cm ²
Control grid circuit resistance	R _{g1}	max.	1	$M\Omega$

2000 V

V_{g2,(ℓ)}

INSTRUMENT CATHODE-RAY TUBES

mono accelerator

Accelerator voltage

- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification (1,2 x), orthogonality, astigmatism and eccentricity correction
- quick-heating cathode
- with or without internal graticule
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Minimum useful scan area	100 mm x 80 mm		
Deflection coefficient horizontal vertical		$_{\text{M}_{\text{y}}}^{\text{M}_{\text{x}}}$	22 V/cm 11,5 V/cm
OPTICAL DATA			
Screen	type	colour	persistence
	GH GY GM	green yellowish-green yellowish-green	medium short medium short long
Useful screen area		≥ 102 mm x 82 n	nm note 1; (last page)
Useful scan area		≥ 100 mm x 80 n	nm
Internal graticule		type 93; see Fig.	4
HEATING			
Indirect by a.c. or d.c.*			
Heater voltage		Vf	6,3 V
Heater current		If	0,24 A
Heating time to attain 10% of the cathode current at equilibrium conditions		appr	ox. 5 s

^{*} Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included) ≤ 333 mm

Faceplate dimensions $118 \pm 1 \text{ mm} \times 98 \pm 1 \text{ mm}$

Net mass approx. 1 kg

Base 12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping)

Socket with solder tags

Socket with printed-wiring pins

type 55589/55594

type 55595

Mu-metal shield to be established

FOCUSING electrostatic

DEFLECTION* double electrostatic

x-plates symmetrical y-plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance deflection plate drive is desirable.

Angle between x and y-traces 90° note 2

Angle between x-trace and x- axis of the internal graticule $$\leqslant 50$$ note 3

Eccentricity of undeflected spot with respect to internal graticule

horizontal ≤ 4 mm

vertical ≤ 2 mm note 2

^{*} Notes see last page.

Cathode to all other elements

D14-360.. D14-360../93

> 4,5 pF 4,5 pF 3,5 pF 3,5 pF 2 pF 1 pF 6 pF

> > 3 pF

Ck

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{\times 1}(\times 2)$
x2 to all other elements except x1	$C_{\times 2(\times 1)}$
y ₁ to all other elements except y ₂	$C_{y1(y2)}$
y ₂ to all other elements except y ₁	$C_{y2(y1)}$
x ₁ to x ₂	C_{x1x2}
y ₁ to y ₂	C _{V1} _{V2}
Control grid to all other elements	C_{g1}

DIMENSIONS AND CONNECTIONS

Dimensions in mm

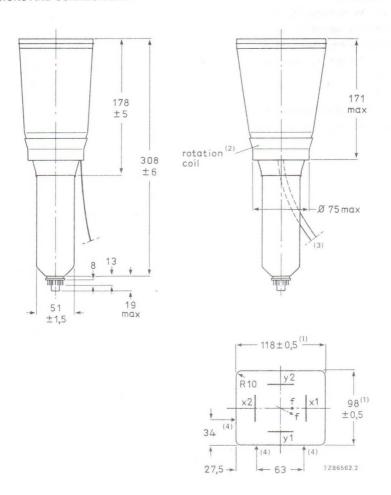


Fig. 1 Outlines.

⁽¹⁾ Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of 122 mm x 102 mm (diagonal 153 mm).

⁽²⁾ The coil is fixed to the envelope with resin and adhesive tape.

⁽³⁾ The length of the connecting leads of the rotation coil is min. 350 mm.

⁽⁴⁾ Reference points on faceplate for graticule alignment (see Fig. 4).

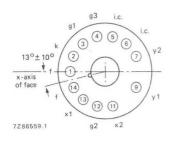
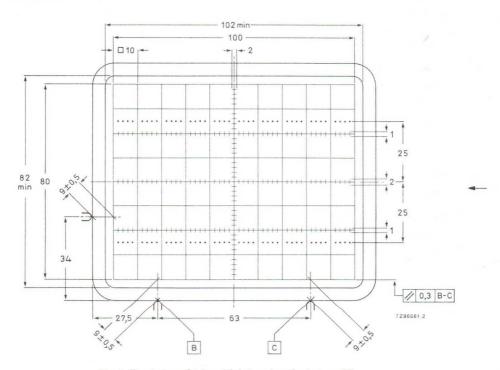


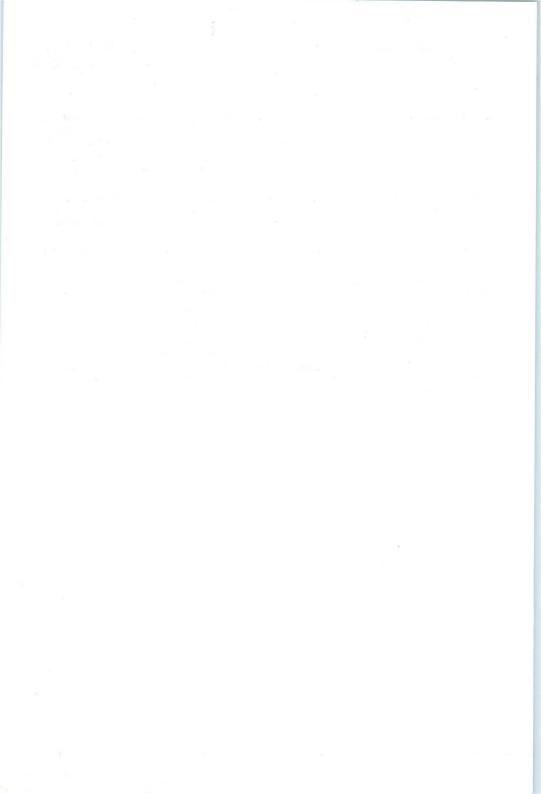
Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.




Fig. 4 Front view of tube with internal graticule, type 93. Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

TYPICAL OPERATION / voltages with respect to	4				
TYPICAL OPERATION (voltages with respect to	cathode)*				
Conditions (note 4)					
Accelerator voltage	Vg2,(ℓ)		2000		
Astigmatism control voltage	$\Delta V_{g2(\ell)}$		0	V	notes 2, 5
Focusing voltage	V_{g3}	220 1	to 370	V	
Cut-off voltage for visual extinction					
of focused spot	$-V_{g1}$	22	to 65	V	
Performance					
Useful scan					
horizontal		>		mm	
vertical		\geqslant	80	mm	
Deflection coefficient	D./I		22	V/cm	
horizontal	M_{\times}	<		V/cm	
vertical	M_{y}	<		V/cm V/cm	
Line width	l.w.	~	0,35	mm	note 6
Deviation of deflection linearity		\leq	2	%	note 7
Geometry distortion		see note	8		
Grid drive for 10 μA screen current	V_d	\approx	10	V	
LIMITING VALUES (Absolute maximum rating	system)				
Accelerator voltage	$V_{g2,(\ell)}$	max.	2200	V	
Focusing electrode voltage	V_{g3}	max.	2200	V	
Control grid voltage	$-V_{g1}$	max. min.	200	V	
Cathode to heater voltage					
positive	Vkf	max.	125		
negative	$-V_{kf}$	max.	125		
Heater voltage	V_{f}	max. min.	6,6 6,0		
Grid drive, averaged over 1 ms	V_d	max.	20	V	
Screen dissipation	WQ	max.	3	mW/cm ²	
Control grid circuit resistance	R _{g1}	max.	1	$M\Omega$	

^{*} Notes are on next page.

NOTES

- 1. As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 102 mm x 82 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
- 2. The tube features internal magnetic correction for orthogonality between x- and y-traces, spot shaping (astigmatism) and vertical eccentricity calibration. Correction is obtained at V_{g2} = 1800 to 2200 V; optimum at V_{g2} = 2000 V.
- 3. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 180 Ω at 20 °C (max, 270 Ω at 80 °C). Approx. 5 mA causes 1° trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances (\pm 5°) and earth magnetic field with reasonable shielding (\pm 2°).
- The mean x-plate potential should be equal to V_{g2}. A deviation may lead to raster distortion beyond the indicated range (see note 8).
- 5. Deviation of mean y-plate potential with respect to V_{g2} will introduce astigmatism (as without internal magnetic correction). The grid 2 impedance should be less than 10 k Ω .
- 6. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I_{ℓ} = 10 μ A.
- 7. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- A graticule consisting of concentric rectangles of 95 mm x 75 mm and 93 mm x 73 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.

INSTRUMENT CATHODE-RAY TUBES

- mono accelerator
- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification, orthogonality, astigmatism and eccentricity correction
- low heater consumption
- with or without internal graticule
- flat screen edges facilitate graticule illumination
- reference points on faceplate for graticule alignment
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$V_{g2,g4}$	2000	V
Minimum useful scan area		100 mm x 80	mm
Deflection coefficient			
horizontal	M _×	19	V/cm
vertical	My	11,5	V/cm

The D14-361. . is equivalent to the type D14-362. . except for the following.

HEATING

Indirect by a.c. or d.c.*

man out by and on and		
Heater voltage	Vf	6,3 V
Heater current	If	0,1 A -
Heating time to attain 10% of		

the cathode current at equilibrium conditions

7 s

approx.

^{*} Not to be connected in series with other tubes.

INSTRUMENT CATHODE-RAY TUBES

- mono accelerator
- 14 cm diagonal rectangular flat face
- internal magnetic lens system for vertical scan magnification, orthogonality, astigmatism and eccentricity correction
- · quick-heating cathode
- with or without internal graticule
- flat screen edges facilitate graticule illumination
- · reference points on faceplate for graticule alignment
- for inexpensive oscilloscopes and read-out devices

QUICK REFERENCE DATA

Accelerator voltage	$V_{g2,g4}$	2000	V
Minimum useful scan area		100 mm x 80	mm
Deflection coefficient			
horizontal	M _×	19	V/cm
vertical	My	11,5	V/cm

OPTICAL DATA

OF FIGAL DATA			
Screen	type	colour	persistence
	GH GY GM	green yellowish-green yellowish-green	medium short medium long
Useful screen area		\geqslant 102 mm x 82 mm; note 1 (last page \geqslant 100 mm x 80 mm but one)	
Useful scan area			
Internal graticule		type 93; see Fig. 4	
HEATING			
Indirect by a.c. or d.c.*			
Heater voltage		V_{f}	6,3 V
Heater current		lf	0,24 A
Heating time to attain 10% of the cathode current at equilibrium conditions		ар	prox. 5 s

^{*} Not to be connected in series with other tubes.

D14-362../93

MECHANICAL DATA

Dimensions and connections (see also outline drawing)

Overall length (socket included)

Faceplate dimensions

Net mass approx. 1 kg

Net mass approx. The

Base 12 pin, all glass, JEDEC B12-246

≤ 333 mm

118 ± 0,5 mm x 98 ± 0,5 mm

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 4) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping) supplied with tube

Socket with solder tags type 55594
Socket with printed-wiring pins type 55595

■ Mu-metal shield 55598

FOCUSING

DEFLECTION double electrostatic

x-plates symmetrical y-plates symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will block part of the electron beam, hence a low impedance delfection plate drive is desirable.

CAPACITANCES

x ₁ to all other elements except x ₂	C _{×1(×2)}	5,7 pF →
x2 to all other elements except x1	C _{×2(×1)}	5 pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	4 pF
y ₂ to all other elements except y ₁	$C_{y2(y1)}$	4 pF
x ₁ to x ₂	C_{x1x2}	2,3 pF
y ₁ to y ₂	Cy1y2	1 pF
Control grid to all other elements	C_{g1}	6 pF
Cathode to all other elements	Cı	3 pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

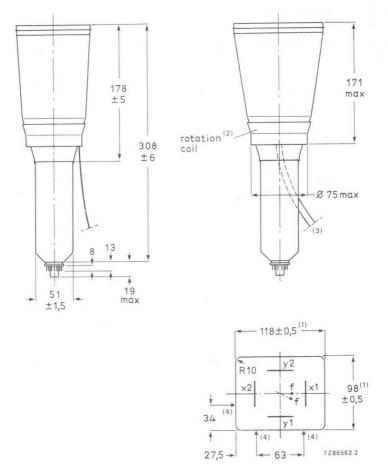
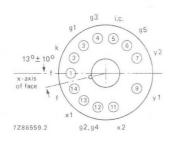



Fig. 1 Outlines.

- (1) Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of $122 \text{ mm} \times 102 \text{ mm}$.
- (2) The coil is fixed to the envelope with resin and adhesive tape.
- (3) The length of the connecting leads of the rotation coil is min. 350 mm.
- (4) Reference points on faceplate for graticule alignment (see Fig. 4).

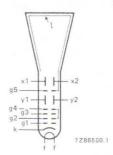


Fig. 2 Pin arrangement; bottom view.

Fig. 3 Electrode configuration.

Internal graticule

The internal graticule is aligned with the faceplate by using the faceplate reference points, see Fig. 4. See also note 1.

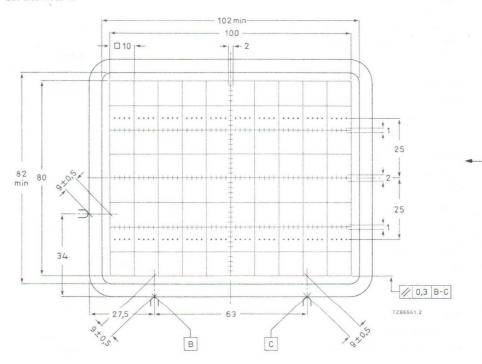


Fig. 4 Front view of tube with internal graticule, type 93. Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)*					
Conditions					
Mean deflection plate potential			2000	V	note 2
Shield voltage for optimum geometry	Vg5,(l)		2000	V	note 3
Accelerator and astigmatism control voltage	$V_{g2,g4}$		2000	V	note 4
Focusing voltage	V_{q3}	220	to 370	V	note 5
Cut-off voltage for visual extinction	3				
of focused spot	$-V_{g1}$	22	to 65	V	note 6
Performance					
Deflection coefficient			19	V/cm	
horizontal	M_{\times}	<	21	V/cm	
vertical	My	<		V/cm V/cm	
Deviation of deflection linearity		\leq	2	%	note 7
Geometry distortion		see n	ote 8		
Luminance reduction at the edges of the useful scan (100 mm x 80 mm),			20	0/	
with respect to screen centre		\leq	30	%	
Eccentricity of undeflected spot with respect to internal gra horizontal vertical	ticule	≪		mm mm	note 9
Angle between x and y-traces			900		note 9
Angle between x-trace and x-axis of the internal graticule		<	50		note 10
Grid drive voltage for 10 μ A screen current	V_d	~	10	V	note 6
Line width	I.w.	≈	0,3	mm	note 11
LIMITING VALUES (Absolute maximum rating system)					
Accelerator voltage	Vg2,g4	max.	2200	V	
Shield voltage	$V_{g5(\ell)}$	max.	2200	V	
Focusing electrode voltage	V_{g3}	max.	2200	V	
Control grid voltage	$-V_{g1}$	max. min.	200	V	
Cathode to heater voltage					
positive negative	Vkf	max.	125 125		
negative	$-V_{kf}$	max.	6,6		
Heater voltage	Vf	min.	6,0		
Grid drive voltage, averaged over 1 ms	V_d	max.	20		
Screen dissipation	Wo	max.	3	mW/cm ²	
Control grid circuit resistance	R _{g1}	max.	1	Ω M	

^{*} Notes are on next page.

NOTES

- As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 102 mm x 82 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig.4).
- The deflection plates must be operated symmetrically; asymmetric drive introduces trace distortion.
 It is recommended that the tube be operated with equal mean x- and y-potentials, in order to minimize tube adjustments. Under this condition g₅ can be connected to g₂,g₄, and made equal to mean y-potential for optimum spot (see also notes 3 and 4).

A difference between mean x- and y-potentials up to 75 V is permissible, however this may influence the specified deflection coefficients, and a separate voltage on g₅ (equal to mean x-potential) may be required.

- 3. The tube meets the geometry specification (see note 8) if V_{g5} is equal to mean x-potential. A range of \pm 50 V around mean x-potential may be applied for further correction.
- 4. Optimum spot is obtained with $V_{g2,g4}$ equal to mean y-potential (see note 2). In general a tolerance of \pm 4 V has no visible effect; $V_{g2,g4}$ tends to be lower with V_{g5} more positive. The circuit impedance $R_{g2,g4}$ should be less than 10 k Ω .
- An actual focus range of 30 V should be provided on the front panel. V_{g3} decreases with increasing grid drive (see also Fig. 5).
- 6. Intensity control on the front panel should be limited to the maximum useful screen current (approx. 50 μ A; see also Fig. 5). It is to be adjusted either by the grid drive (up to 22 V) or for maximum acceptable line width. The corresponding cathode current or I_{g2,g4} (up to 500 μ A) depend on the cut-off voltage and cannot be used for control settings.
- 7. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- A graticule consisting of concentric rectangles of 100 mm x 80 mm and 98 mm x 78 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
- The tube features internal magnetic correction for orthogonality between x- and y-traces, spot shaping (astigmatism) and eccentricity calibration.
- 10. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a resistance of 185 \pm 25 Ω at 20 °C, which increases by approx. 0,4%/K for rising temperature. Approx. 5 mA causes 10 trace rotation. Thus maximum required voltage is approx. 11 V for tube tolerances (\pm 50) and earth magnetic field with reasonable shielding (\pm 20).
- 11. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I $_{\rm Q}$ = 10 μ A.

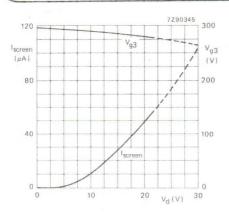


Fig. 5 Screen current (I $_{screen}$) and focusing voltage (V $_{g3}$) as a function of grid drive voltage (V $_{d}$); typical curves.

Data based on pre-production

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- · domed mesh post-deflection acceleration
- · internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- · quick-heating cathode
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 75 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	$V_{g7(\ell)}$	10	16,5 kV
First accelerator voltage	V_{g4}	2	2,2 kV
Minimum useful scan area		100 m	m x 80 mm
Deflection coefficient			
horizontal	M _X	8	8,3 V/cm
vertical	My	4	4 V/cm

OPTICAL DATA	
Screen	metal-backed phosphor
type	GH
colour persistance	green medium short
Useful screen area	≥ 102 mm x 82 mm; note 1 (last page)
Useful scan area	≥ 100 mm x 80 mm
Internal graticule	type 93; see Fig. 4

HEATING

Indirect by a.c. or d.c.* Heater voltage Heater current

Heater time to attain 10% of the cathode current at equilibrium conditions

Vf 6,3 V If 0,24 A

> 5 s approx.

^{*} Not to be connected in series with other tubes.

D14-370GH/93

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)

Faceplate dimensions 118 \pm 0,5 mm x 98 \pm 0,5 mm

Net mass approx. 1 kg

Base 12 pin, all glass, JEDEC B12-246

≤ 338 mm

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 5) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

Accessories

Pin protector (required for shipping) supplied with tube

Socket with solder tags type 55594

Socket with printed-wiring pins type 55595

Final accelerator contact connector type 55569/55597

→ Mu-metal shield 55599

FOCUSING electrostatic

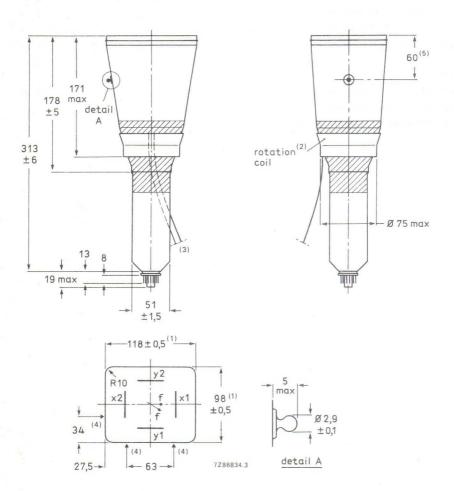
DEFLECTION double electrostatic

x-plates symmetrical v-plates symmetrical

olates symmetrical

CAP	ACI	TAI	NCES
CCI	$\neg \circ$		ACEO

x ₁ to all other elements except x ₂	C _{×1(×2)}	4,2 pF
x_2 to all other elements except x_1	C _{x2(x1)}	4,2 pF
to all other alamanta account	0	0.1 5


y₁ to all other elements except y₂ 3,1 pF $C_{y1(y2)}$ y2 to all other elements except y1 $C_{y2(y1)}$ 3,1 pF

x₁ to x₂ 2 pF C_{x1x2} Cy1y2 y1 to y2

1,6 pF Control grid to all other elements C_{g1} 6 pF Cathode to all other elements C_k 3,2 pF Focusing electrode to all other elements C_{q3} 5 pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

- 1. Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will pass through an opening of 122 mm x 102 mm (diagonal 153 mm).
- 2. The coil is fixed to the envelope with resin and adhesive tape.
- 3. The length of the connecting leads of the rotation coil is min. 350 mm.
- 4. Reference points on faceplate for graticule alignment (see Fig. 4).
- 5. The centre of the final accelerator contact is situated within a square of 10 mm x 10 mm around the indicated position.

DIMENSIONS AND CONNECTIONS (continued)

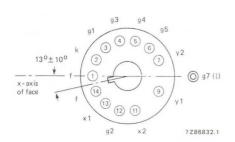


Fig. 2 Pin arrangement; bottom view.

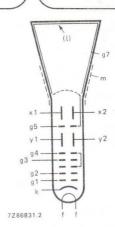


Fig. 3 Electrode configuration.

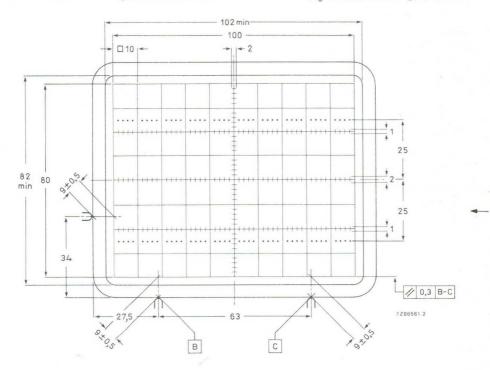


Fig. 4 Front view of tube with internal graticule, type 93. The faceplate reference points are used for aligning the graticule with the faceplate.

Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

TYPICAL OPERATION (voltages with respect to cathode) *

Con	H	iti	O	20
COII	ч	,	VI	113

Final accelerator voltage	V _g 7(ℓ)	10	16,5	kV
Mean deflection plate potential		2	2,2	kV note 2
Shield voltage for optimum geometry	V_{g5}	2	2,2	kV note 3
First accelerator and astigmatism control voltage	V_{g4}	2	2,2	kV note 3
Focusing voltage	V_{g3}	400 to	800	V
Grid 2 voltage	V_{g2}	2	2,2	kV
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	45 to 90	50 to 100	V

Outer conductive coating (m) and mu-metal shield to be earthed.

Performance

Horizontal deflection coefficient	M_{\times}	8	8,3 V/cm ± 10%
Vertical deflection coefficient	My	4,0	4,0 V/cm ± 5%
Deviation of deflection linearity		≤ 2%	note 4
Geometry distortion			note 5
Eccentricity of undeflected spot in horizontal direction		≤4 mm	
in vertical direction		≤ 2 mm	
Angle between x- and y-traces		900	note 2
Angle between x-trace and x-axis of internal graticule		≤ 50	note 6
Luminance reduction with respect to screen centre x-axis, outer graticule line		≤ 30%	
y-axis, outer graticule line		≤ 30%	
any corner		≤ 50%	
Grid drive for 10 μ A screen current	V_d	approx.	20 V
Line width	I.w.	approx.	0,35 mm note 7

^{*} Notes are on last page.

LIMITING	VALUES	(Absolute	maximum	rating system)
----------	--------	-----------	---------	----------------

Final accelerator voltage	V _g 7(ℓ)	max.	18 k	V note 8
Shield voltage	V_{g5}	max.	3,3 k	×V
First accelerator and astigmatism control voltage	V_{g4}	max.	3,3 4	٧
Focusing electrode voltage	V_{g3}	max.	2,5 k	٧
Grid 2 voltage	V_{g2}	max.	2,5 k	.∨ →
Control grid voltage	$-V_{g1}$	max. min.	200 \	
Cathode to heater voltage positive negative	V _{kf} -V _{kf}	max.	125 V	
Heater voltage	V_{f}	max. min.	6,6 \ 6,0 \	
Voltage between g2 and g4	$\Delta V_{g2,g4}$	max.	2	¢V

Voltage between g4,g5 and any deflection plate

Grid drive, averaged over 1 ms Screen dissipation

Control grid circuit resistance

500 V $\Delta V_{g4,g5,x,y}$ max. max.

 V_d We max. R_{g1} max.

25 V 8 mW/cm² 1 $M\Omega$

NOTES

- As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 102 mm x 82 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 4).
- The deflection plates must be operated symmetrically; floating mean x- or y-potentials will result
 into non-uniform line width and geometry distortion. The mean x- and y-potentials should be
 equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry.
 - The tube features internal magnetic correction for orthogonality between x- and y-traces, spot shaping (astigmatism) and eccentricity calibration.
- 3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case V_{g5} must be made equal to mean x-potential, and a range of 0 to --25 V with respect to mean y-potential will be required on g4 for astigmatism correction. The circuit resistance for V_{g4} should be \leq 10 k Ω .
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- A graticule consisting of concentric rectangles of 100 mm x 80 mm and 98 mm x 78 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
- 6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of $185 \pm 25 \Omega$ at 0 °C, which increases by approx. 0,4%/K for rising temperature. Approx. 6,5 mA causes 1°0 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances (\pm 5°) and earth magnetic field with reasonable shielding (\pm 2°).
- 7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I $_{\rm Q}$ = 10 μ A.
- The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), when the tube is used within its limiting values (beam current I_Q ≤ 100 μA).

Data based on pre-production

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- domed mesh post-deflection acceleration
- internal magnetic lens system for correction of orthogonality, astigmatism and eccentricity
- quick-heating cathode
- side contacts to deflection plates
- internal graticule
- high sensitivity and high brightness
- short overall length
- for compact oscilloscopes with up to 150 MHz bandwidth

QUICK REFERENCE DATA

Final accelerator voltage	V _g 7(ℓ)	16,5 kV
First accelerator voltage	V_{g4}	2,2 kV
Minimum useful scan area		100 mm x 80 mm
Deflection coefficient horizontal	M_X	8,3 V/cm
vertical	My	4 V/cm (max. 4,2 V/cm)
Photographic writing speed	p.w.s.	2,0 cm/ns

OPTICAL DATA

Screen	metal-backed phosphor
type	GH
colour	green
persistance	medium short
Useful screen area	\geq 102 mm x 82 mm; note 1 (last page)
Useful scan area	≥ 100 mm x 80 mm
Internal graticule	type 93; see Fig. 5

HEATING

Indirect by a.c. or d.c. * Heater voltage Heater current

Heating time to attain 10% of the cathode current at equilibrium conditions

6,3 V Vf 0,24 A

If

approx. 5 s

^{*} Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included) ≤ 338 mm

Faceplate dimensions $118 \pm 0.5 \text{ mm} \times 98 \pm 0.5 \text{ mm}$

Net mass approx. 1 kg

Base 12 pin, all glass, JEDEC B12-246

Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone. The reference points on adjoining edges of the faceplate (see Fig. 6) enable the tube to be mounted accurately in the front panel, thus providing optimum alignment of the internal graticule.

55599

electrostatic

Accessories

Pin protector (required for shipping) supplied with tube Socket with solder tags type 55594

Socket with printed-wiring pins type 55595

Side contact connector for φ 0,6 mm pin (4 required) type 55596 (AMP87313)

Final accelerator contact connector type 55569/55597

→ Mu-metal shield

FOCUSING

DEFLECTION double electrostatic

x-plates symmetrical

y-plates symmetrical

Control grid to all other elements

Focusing electrode to all other elements

Cathode to all other elements

6 pF

5 pF

3,2 pF

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{\times 1}(\times 2)$	2,4 pF
x2 to all other elements except x1	$C_{\times 2(\times 1)}$	2,4 pF
y ₁ to all other elements except y ₂	Cy1(y2)	1,9 pF
y ₂ to all other elements except y ₁	$C_{y2(y1)}$	1,9 pF
× ₁ to × ₂	C_{x1x2}	1,8 pF
y ₁ to y ₂	C _{y1y2}	1,5 pF

C_{g1}

 C_k

 C_{g3}

DIMENSIONS AND CONNECTIONS

Dimensions in mm

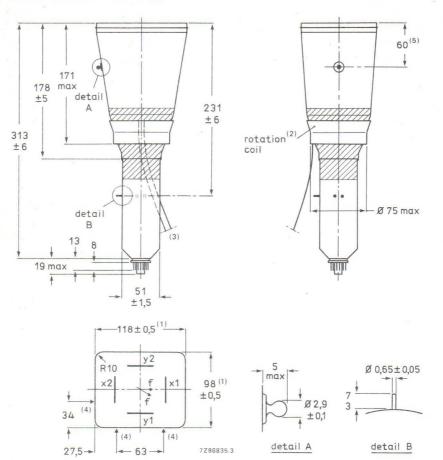


Fig. 1 Outlines.

- Dimensions of faceplate only. The complete assembly of faceplate and cone (frit seal included) will
 pass through an opening of 122 x 102 mm (diagonal 153 mm).
- 2. The coil is fixed to the envelope with resin and adhesive tape.
- 3. The length of the connecting leads of the rotation coil is min. 350 mm.
- 4. Reference points on faceplate for graticule alignment (see Fig. 5).
- 5. The centre of the final accelerator contact is situated within a square of $10 \text{ mm} \times 10 \text{ mm}$ around the indicated position.

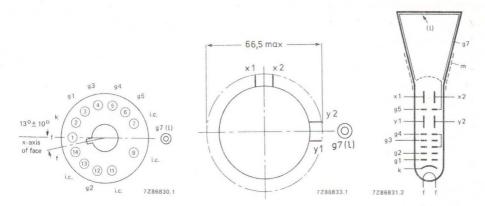


Fig. 2 Pin arrangement; bottom view.

Fig. 3 Side-contact arrangement bottom view.

Fig. 4 Electrode configuration.

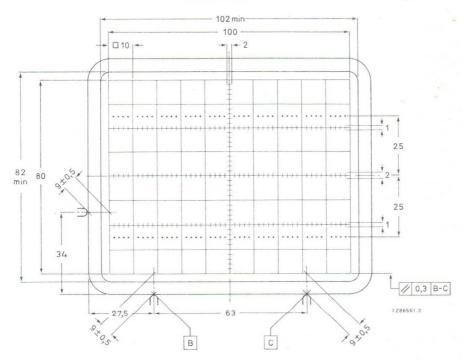


Fig. 5 Front view of tube with internal graticule, type 93. The faceplate reference points are used for aligning the graticule with the faceplate.

Line thickness = 0,2 mm; dot diameter = 0,4 mm; colour: red.

TYPICAL OPERATION (voltages with respect to cathode)* Conditions						
Final accelerator voltage	V _g 7(ℓ)		16,5	kV		
Mean deflection plate potential	· g/(x)			kV	note 2	
Shield voltage for optimum geometry	V_{g5}			kV	note 3	
First accelerator and astigmatism control voltage	V _{g4}			kV	note 3	
Focusing voltage	-	400 to			110100	
Grid 2 voltage	V _{g3}	400 10		kV		
	V _{g2}	50 to				
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	50 to	100	V		
Outer conductive coating (m) and mu-metal shield to be earthed.						
Performance						
Horizontal deflection coefficient	M_{\times}		8,3	V/cr	m ± 10%	
Vertical deflection coefficient	My		4,0	V/cr	m ± 5%	
Deviation of deflection linearity	,	<	2	%	note 4	
Geometry distortion					note 5	
Eccentricity of undeflected spot						
in horizontal direction		\leq		mm		
in vertical direction		<	2	mm		
Angle between x- and y-traces			900		note 2	
Angle between x-trace and x-axis of internal graticule		<	50		note 6	
Luminance reduction with respect to screen centre x-axis, outer graticule line		<	30	%		
y-axis, outer graticule line		<	30	%		
any corner		<	50	%		
Grid drive for 10 µA screen current	V_d	approx.	20	V		

I.W.

p.w.s.

approx. 0,35 mm note 7

2,0 cm/ns

Line width

Photographic writing speed (V_d = 50 V; Polaroid 612 film; GH phosphor; F = 1,2; magnification 0,5)

^{*} Notes are on last page.

Control grid circuit resistance

LIMITING VALUES (Absolute maximum rating system)				
Final accelerator voltage	٧ _{q7(ℓ)}	max.	18	kV note 8
Shield voltage	V_{g5}	max.	3,3	kV
First accelerator and astigmatism control voltage	V_{q4}	max.	3,3	kV
Focusing electrode voltage	V _{g3}	max.	2,5	kV
Grid 2 voltage	V_{g2}	max.	2,5	kV
Control grid voltage	-V _{g1}	max. min.	200	V
Cathode to heater voltage positive	V_{kf}	max.	125	V
negative	$-V_{kf}$	max.	125	V
Heater voltage	V_{f}	max. min.	6,6 6,0	
Voltage between g2 and g4	$\Delta V_{g2,g4}$	max.	2	kV
Voltage between g4,g5 and any deflection plate	$\Delta V_{g4,g5,x,y}$	max.	500	V
Grid drive, averaged over 1 ms	V_d	max.	25	V
Screen dissipation	Wę	max.	8	mW/cm ²

R_{g1}

1 MΩ

max.

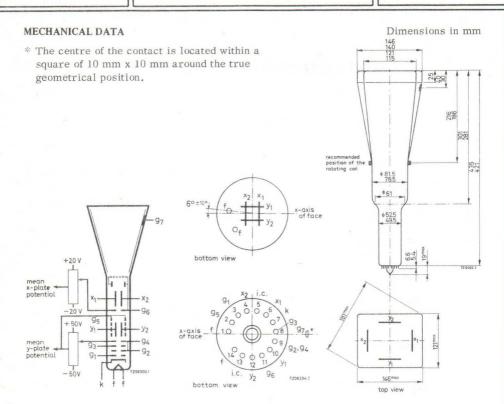
NOTES

- As the frit seal is visible through the faceplate, and not necessarily aligned with the internal graticule, application of an external passe-partout with open area of max. 102 mm x 82 mm is recommended. The internal graticule is aligned with the faceplate by using the faceplate reference points (see Fig. 5).
- The deflection plates must be operated symmetrically; floating mean x- or y-potentials will result into non-uniform line width and geometry distortion. The mean x- and y-potentials should be equal; under this condition the tube will be within the specification without corrections for astigmatism and geometry.

The tube features internal magnetic correction for orthogonality between x- and y-traces, spot shaping (astigmatism) and eccentricity calibration.

- 3. For some applications a mean x-potential up to 50 V positive with respect to mean y-potential is inevitable. In this case V_{g5} must be made equal to mean x-potential, and a range of 0 to -25 V with respect to mean y-potential will be required on g4 for astigmatism correction. The circuit resistance for V_{g4} should be \leqslant 10 k Ω .
- 4. The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- A graticule consisting of concentric rectangles of 100 mm x 80 mm and 98 mm x 78 mm is aligned with the internal graticule. With optimum trace rotation correction the edges of a raster will fall between these rectangles.
- 6. The tube has a trace rotation coil, fixed onto the lower cone part. The coil has 1000 turns and a typical resistance of 185 \pm 25 Ω at 20 °C, which increases by approx. 0,4%/K for rising temperature. Approx. 6,5 mA causes 10 trace rotation. Thus maximum required voltage is approx. 13 V for tube tolerances (\pm 50) and earth magnetic field with reasonable shielding (\pm 20).
- 7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current I χ = 10 μ A.
- 8. The X-ray dose rate remains below the acceptable value of 36 pA/kg (0,5 mR/h), when the tube is used within its limiting values (beam current I $_{\rm Q} \le$ 100 μ A).

INSTRUMENT CATHODE-RAY TUBE


 $18\ \mathrm{cm}$ diagonal, rectangular flat faced oscilloscope tube with mesh and metal backed screen.

QUICK REFERENCE DATA				
Final accelerator voltage	V _{g7(ℓ)}	10	kV	
Display area		120 x 100	mm^2	
Deflection factor, horizontal	M_X	15,5	V/cm	
vertical	M_y	4,5	V/cm	

SCREEN: Metal backed phosphor

	colour	persistence
D18-120GH	green	medium short

Useful screen area	min.	120 x 100	mm ²
Useful scan at $V_{g7(\ell)}/V_{g2}$, $g_4 = 5$ horizontal	min.	120	mm
vertical	min.	100	mm
Spot eccentricity in horizontal direction in vertical direction		± 8 ± 6	mm mm
HEATING : Indirect by a.c. or d.c.; parallel supply			
Heater voltage	$V_{\mathbf{f}}$	6, 3	V
Heater current	$\overline{\mathrm{I_f}}$	300	mA

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Dimensions and connections

See also outline drawing

Overall length (socket included)	max.	454	mm
Face dimensions	max.	146 x 121	mm^2

Face dimensions		max.	146 x 121	mm ²

Rase	14 nin all glace

Accessories

Net weight

Socket (supplied with tube)	type 55566
Final accelerator contact connector	type 55563A

Mu-metal shield type 55584

g

1300

approx.

CAPACITANCES

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x_1(x_2)}$	6,5	pF	
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x2(x1)}$	6,5	pF	
\mathbf{y}_1 to all other elements except \mathbf{y}_2	$C_{y_1(y_2)}$	5	pF	
\mathbf{y}_2 to all other elements except \mathbf{y}_1	$C_{y_2(y_1)}$	5	pF	
x_1 to x_2	$c_{x_1x_2}$	2, 2	pF	
y_1 to y_2	$c_{y_1y_2}$	1,7	pF	
Control grid to all other elements	c_{g_1}	5,5	pF	
Cathode to all other elements	c_k	4,5	pF	

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates

symmetrical

y plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

Angle between x and y traces

 90 ± 10

Angle between x trace and the horizontal axis of the face max. 5° 1)

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_{\ell} = 10 \ \mu A$.

Line width, at screen centre

1. w.

0.50

mm

in corner area

1.w.

approx.

0,60 mm

¹⁾ See last page.

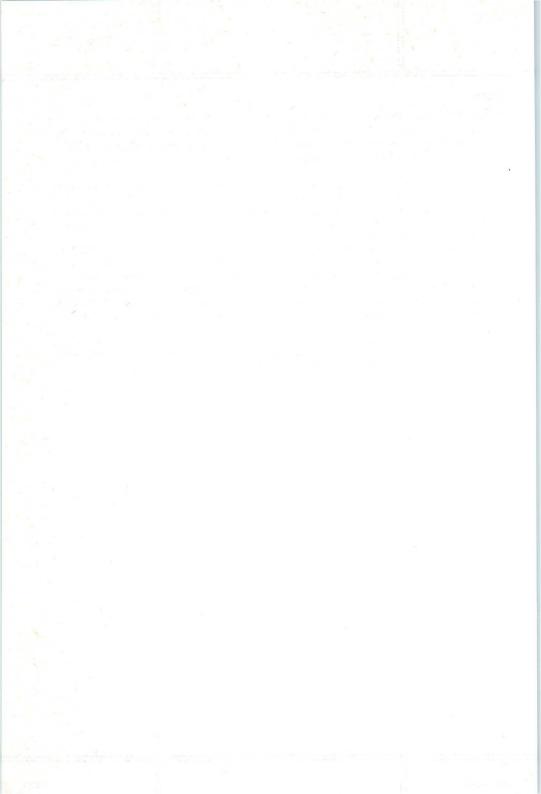
TYPICAL.	OPERATING	CONDITIONS
----------	------------------	------------

	TITIONE OF ENTITIES CONDITIONS					
	Final accelerator voltage	$V_{g7}(\ell)$		10000	V	
	Interplate shield voltage	V 06		2000	V	
	Geometry control voltage	ΔVg6		±20	V^{2}	
	Deflection plate shield voltage	Vg5		2000	V^{3}	
	Focusing electrode voltage	v_{g3}		350 to 500	V	
	First accelerator voltage	Vg2, g4		2000	V	
	Astigmatism control voltage	$\Delta V_{g_2, g_4}$		±50	V^{4}	
	Control grid voltage for visual					
	extinction of focused spot	v_{g_1}		-25 to -80	V	
	Grid drive for 10 µA screen current	01	approx	. 12	V	
0	Deflection factor, horizontal	М	av.	15,5	V/cm	
	Deflection factor, nortzontar	M_{X}	max.	17	V/cm	
	vertical	M	av.	4,5	V/cm	
	102000	M_y	max.	5	V/cm	
	Deviation of linearity of deflection		max.	2	% ⁵)	
	Geometry distortion		See not	e 6		
	Useful scan, horizontal		min.	120	mm	
	vertical		min.	100	mm	
	LIMITING VALUES (Absolute max. rating system	n)				
			max.	11000	V	
	Final accelerator voltage	$V_{g_7(l)}$	min.	9000	V	
	Interplate shield voltage and					
	geometry control electrode voltage	V	max.	2200	V	
	Deflection plate shield voltage	v_{g6} v_{g5}	max.	2200	V	
	Focusing electrode voltage	$v_{g_3}^{g_5}$	max.	2200	V	
	First accelerator and astigmatism	. 83				

geometry control electrode voltage	V_{g6}	max.	2200	V	
Deflection plate shield voltage	V _{g5}	max.	2200	V	
Focusing electrode voltage	$v_{g_3}^{s_3}$	max.	2200	V	
6		max.	2200	V	
control electrode voltage	vg2,g4	min.	1350	V	
Control mid voltage	-V	max.	200	V	
Colletor grid voltage	-vg1	min.	0	V	
Cathoda to heater voltage	V _{kf}	max.	125	V	
Cathode to heater voltage	$-V_{kf}$	min.	125	V	
Voltage between astigmatism control					
electrode and any deflection plate	$V_{g4/x}$	max.	500	V	
	$V_{\varphi A/V}$	max.	500	V	
Grid drive, average	84)	max.	20	V	
	Deflection plate shield voltage Focusing electrode voltage First accelerator and astigmatism control electrode voltage Control grid voltage Cathode to heater voltage Voltage between astigmatism control electrode and any deflection plate	Deflection plate shield voltage V_{g5}^{80} Focusing electrode voltage V_{g3}^{80} First accelerator and astigmatism control electrode voltage V_{g2}, g_4 Control grid voltage V_{g2}, g_4 Cathode to heater voltage V_{kf} Voltage between astigmatism control electrode and any deflection plate $V_{g4/x}$ $V_{g4/y}$	Deflection plate shield voltage V_{g5} max. Focusing electrode voltage V_{g3} max. First accelerator and astigmatism control electrode voltage V_{g2} , V_{g3} min. Control grid voltage V_{g2} , V_{g4} min. Cathode to heater voltage V_{g1} min. V_{g1} min. V_{g1} min. V_{g2} voltage between astigmatism control electrode and any deflection plate $V_{g4/x}$ max. $V_{g4/y}$ max.	Deflection plate shield voltage V_{g5} max, 2200 Focusing electrode voltage V_{g3} max. 2200 First accelerator and astigmatism control electrode voltage V_{g2} , V_{g3} min. V_{g2} , V_{g4} min. V_{g2} , V_{g3} min. V_{g2} , V_{g3} min. V_{g3} min. V_{g3} min. V_{g3} min. V_{g3} min. V_{g4} min. V_{g4} min. V_{g4} min. V_{g4} min. V_{g4} max. V_{g4}	Deflection plate shield voltage V_{g5} max. V_{g6} min. V_{g6} max. V_{g6} ma

Notes see next page.

NOTES


- 1) In order to align the x-trace with the horizontal axis of the screen, the whole picture can be rotated by means of a rotation coil. This coil will have 50 amp. turns for the indicated max. rotation of 50 and should be positioned as indicated in the drawing.
- 2) This tube is designed for optimum performance when operating at a ratio $V_{g\gamma}/V_{g\gamma}$, $g_A=5$.

 V_{g7}/V_{g2} , g_4 = 5. The geometry electrode voltage should be adjusted within the indicated range (values with respect to the mean x-plate potential).

A negative control voltage will cause some pincushion distortion andless background light, a positive control voltage will give some barrel distortion and a slight increase of background light.

- 3) The deflection plate shield voltage should be equal to the mean y-plate potential. The mean x- and y-plate potentials should be equal for optimum spot quality.
- 4) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 5) The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 6) A graticule, consisting of concentric rectangles of 115 mmx95 mm and 112,2 mmx93,0 mm is aligned with the electrical x-axis of the tube, with optimum correction potentials applied, a raster will fall between these rectangles.

June 1973 227

INSTRUMENT CATHODE-RAY TUBE

Cathode-ray tube for monitoring purposes.

QUICK REFERE	NCE DATA		
Accelerator voltage	$V_{g_3}(\ell)$	800	V
Display area	Both directi	ons full sca	an
Deflection coefficient, horizontal vertical	${ m M_X} { m M_Y}$	62, 5 40	V/cm V/cm

SCREEN

	colour	persistence
DG7-5	yellowish green	medium short

Useful screen diameter

> 65 mm

Useful scan

horizontal

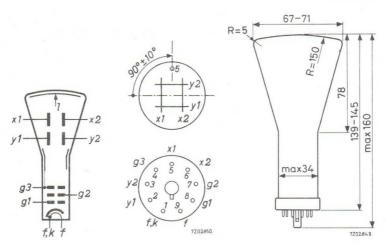
full scan

vertical

full scan

HEATING

Indirect by a.c. or d.c.; parallel supply


Heater voltage

Heater current

 $\frac{V_f}{I_f}$ 6,3 V $\frac{V_f}{I_f}$ 300 mA

MECHANICAL DATA

Dimensions in mm

Mounting position:

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

-			
13	0	0	0
D	a	0	

English Loctal 9_pin

Dimensions and connections

See also outline drawing

Overall	1 am att	-

Overall length

Face diameter

Net mass:

Accessories

Mu-metal shield

160

71 mm

mm

approx. 140 g

type 55530

3,2 pF

 C_k

CAL	DAC	TT	AN	CES
LA	736	45 5	LYTA	CEO

\mathbf{x}_1 to all other elements except \mathbf{x}_2	$C_{x_1}(x_2)$	2,8	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x_2}(x_1)$	2,8	pF
\mathbf{y}_1 to all other elements except \mathbf{y}_2	$C_{y_1}(y_2)$	3,0	pF
\mathbf{y}_2 to all other elements except \mathbf{y}_1	$^{\mathrm{C}}_{\mathrm{y}_{2}}\left(\mathrm{y}_{1}\right)$	3,3	pF
, x_1 to x_2	$c_{x_1x_2}$	0,8	pF
y_1 to y_2	$C_{y_1y_2}$	0,6	pF
Control grid to all other elements	C_{g_1}	7,0	pF

FOCUSING

electrostatic

DEFLECTION double electrostatic

x plates symmetrical y plates symmetrical

Cathode to all other elements

Angle between x and y traces $90^{\circ}\pm1,5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage	$V_{g_3}(l)$	800 V
Beam current	I(1)	$0,5 \mu A$
Line width	1.w.	0.4 mm

TYPICAL OPERATING CONDITIONS

Accelerator voltage	Vg ₃ (ε)	800	V
Focusing electrode voltage	v_{g_2}	200 to 300	V
Control grid voltage for visual extinction of focused spot	$-v_{g_1}$	max. 50	V
Deflection coefficient, horizontal	M_X	53 to 72	V/cm
vertical	M_y	33 to 45	V/cm
Geometry distortion	S	ee note 1 (nex	t page)
Useful scan, horizontal	fu	ıll scan	
vertical	fı	ıll scan	

April 1984

LIMITING VALUES (Absolut	e max. rating	system)				
Accelerator voltage		Vg3 (1)	max.	1000	V	
		53(1)	min.	800	V	
Focusing electrode voltage		v_{g_2}	max.	400	V	
Control grid voltage						
negative		$-v_{g_1}$	max.	200	V	
positive		v_{g_1}	max.	0	V	
positive peak		$v_{g_{1p}}$	max.	2	V	
Cathode to heater voltage		•				
cathode positive	е	V+k/f-	max.	200	V	
cathode negativ	e	V-k/f+	max.	125	V	
Voltage between accelerator	electrode					
and any deflec	ction plate	$v_{g3/x}$	max.		V	
		Vg3/y	max.	500	V	
Screen dissipation		W_{ℓ}	max.	3	mW/	cm ²
CIRCUIT DESIGN VALUES						
Focusing voltage	v_{g_2}	250 to	375 V j	per kV	of Vg3	3
Control grid voltage for visu extinction of focused sp		0 to	62,5 V]	per kV	of Vg3	3
Deflection coefficient						
horizontal	M_X		90 V/			- 0
vertical	M_y	41 to	56 V/	cm per	kV of	v_{g_3}
Control grid circuit resistar	nce R _{g1}	max.	0,5 MS	2		
Deflection plate circuit						
resistar	R_{X}, R_{V}	max.	5 MS	2		

 $^{^{1}}$) A graticule, consisting of concentric rectangles of 43.2 mm x 43.2 mm and 40 mm x 40 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

INSTRUMENT CATHODE-RAY TUBE

Cathode-ray tube for monitoring purposes.

QUICK REFERENCE DATA

Accelerator voltage	V _g 3(ℓ)	800 V
Display area	Both direc	tions full scan
Deflection coefficient		
horizontal	M_{X}	62,5 V/cm
vertical	My	40 V/cm

SCREEN

	Colour	Persistence
DG7-6	yellowish green	medium short

Useful screen diameter > 65 mm

Useful scan
horizontal full scan
vertical full scan

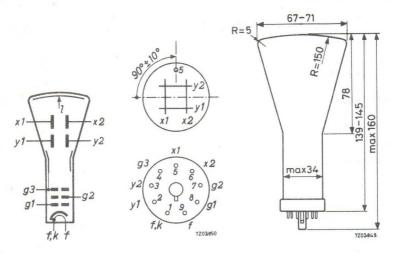
HEATING: Indirect by a.c. or d.c.; parallel supply

Heater voltage $\frac{V_{f}}{I_{f}}$ 6,3 V Heater current

MECHANICAL DATA

Dimensions and connections

See also outline drawing


Overall length < 160 mm
Faceplate diameter < 71 mm

Net mass approx. 140 g

Accessories

Mu-metal shield type 55530

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

English loctal 9-pin

CAPACITANCES

x1 to all other elements except x2	$C_{x1}(x2)$	2,8	pF
x2 to all other elements except x1	$C_{x2(x1)}$	2,8	pF
y1 to all other elements except y2	Cy1(y2)	3,0	pF
y_2 to all other elements except y_1	$C_{y2(y1)}$	3,3	pF
x ₁ to x ₂	C_{X1X2}	0,8	pF
y ₁ to y ₂	C_{y1y2}	0,6	pF
Control grid to all other elements	C_{g1}	7,0	pF
Cathode to all other elements	C_k	3, 2	pF

FOCUSING

electrostatic

DEFLECTION double electrostatic

x plates asymmetrical

x1 has to be connected to the accelerator electrode.

Earthing of the accelerator electrode is recommended.

y plates symmetrical

Angle between x and y traces $90^{\circ} \pm 1,5^{\circ}$

LINE WIDTH

Measured on a circle of 50 mm diameter

Accelerator voltage	$V_{g3(\ell)}$	800	V
Beam current	\mathtt{I}_{ℓ}	0,5	μΑ
Line width	1.w.	0,4	mm

TYPICAL OPERATING CONDITIONS

Accelerator voltage

Useful scan, horizontal

vertical

0	go(t)	
Focusing electrode voltage	$V_{ m g2}$ 200 to 300 V	
Control grid voltage for visual extinction of focused spot	V _{g1} < -50 V	
Deflection coefficient, horizontal	M_X 53 to 72 V/cm	
vertical	$M_{ extbf{y}}$ 33 to 45 V/cm	
Geometry distortion	see note 1	

V~3(0)

full scan

full scan

800

 $^{^{1}}$) A graticule consisting of concentric rectangles of 43, 2 mm x 43, 2 mm and 40 mm x 40 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

LIMITING VALUES (Absolute max. rating sy	vstem)				
Accelerator voltage	$V_{g3(\ell)}$	max. min.	1000 800	V	
Focusing electrode voltage	V_{g2}	max.	400	V	
Control grid voltage, negative	-Vg1	max.	200	V	
positive	v_{g1}	max.	0	V	
positive peak	v_{g1_p}	max.	2	V	
Cathode to heater voltage, positive	V _{kf}	max.	200	V	
negative	$-V_{\mathrm{kf}}$	max.	125	V	
Voltage between accelerator electrode	V _{g3/x}	max.	500	V	
and any deflection plate	V _{g3/x} V _{g3/y}	max.	500	V	
Screen dissipation	W_ℓ	max.	3	mW/cn	n^2

CIRCUIT DESIGN VALUES

Focusing voltage		V_{g2}	250 to	375	V per kV of V _{g3}
Control grid voltage for extinction of focused		v_{g1}	0 to	-62, 5	V per kV of V_{g3}
Deflection coefficient,	horizontal	M_X	66 to	90	V/cm per kV of V _{g3}
	vertical	My	41 to	56	V/cm per kV of V _{g3}
Control grid circuit re	esistance	R _{g1}	max.	0,5	$M\Omega$
Deflection plate circui	t resistance	R_x , R_y	max.	5	$M\Omega$

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube with asymmetrical deflection, intended for monitoring purposes.

QUICK REFERENCE DATA

Final accelerator voltage	V _g 4, _g 2,(ℓ)	500 V
Display area	Both directions	s full scan
Deflection coefficient, horizontal	M _X	37 V/cm
vertical	My	21 V/cm

SCREEN

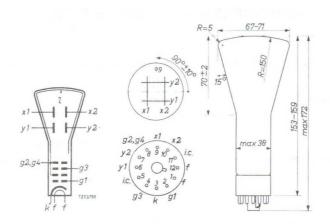
	Colour	Persistence
DG7-31	yellowish green	medium short

DG7-31	yellowish green	medium short

Useful diameter Useful scan, horizontal vertical

> 65 mm full scan

full scan


HEATING

Indirect by a.c. or d.c.; parallel supply

Heater voltage

6,3 V Heater current 300 mA MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base Duodecal 12 pin

Dimensions and connections

See also outline drawing

Overall length

< 172 mm

Face diameter < 71 mm

Net mass approx. 120 g

Accessories

Mu-metal shield type 55530

CAPACITANCES						
x1 to all other ele	ments except x2		$C_{\mathbf{x}}$	1(x2)	3,7	pF
x2 to all other ele	ments except x ₁			2(x1)	3,0	pF
y ₁ to all other ele	ments except y2			1(y2)	2,5	pF
y2 to all other ele	ments except y ₁			2(y1)	2,5	pF
x ₁ to x ₂				1x2	1,7	pF
y ₁ to y ₂			C_{v}	1v2	1,0	pF
Control grid to all	l other elements		Cg	-	7,6	pF
Cathode to all other	er elements		C_k		3,2	pF
FOCUSING	electrostatic					
DEFLECTION	double electrost	tatic				
x plates	asymmetrical					
y plates	symmetrical					
Angle between x a	nd y traces	$90^{\circ} \pm 1,5^{\circ}$				
LINE WIDTH						
Measured on a cin	ccle of 50 mm diam	neter				
Accelerator volta	ge		Vg	4g2(l)	500	V
Beam current			\mathbf{I}_{ℓ}		0,5	μΑ
Line width			1. v	V.	0,4	mm
TYPICAL OPERAT	ING CONDITIONS					
Accelerator volta	ge		$V_{g4g2(\ell)}$		500	V
Focusing electrod	e voltage		v_{g3}	0	to 120	V
Control grid volta of focused spot	ge for visual extin	ction	v_{gl}	-50	to - 100	V
Deflection coeffic	ient, horizontal		M_X	33, 3	to 41,5	V/cm
	vertical		M_y	18,8	to 23, 2	V/cm
Geometry distorti	ion			see n	ote 1 (nex	kt page)
Useful scan, hori	zontal			ful	ll scan	
vert	ical			ful	ll scan	

LIMITING VALUES	(Absolute max.	rating system)
-----------------	----------------	----------------

LIMITING VALUES	(Hibborace max. Lating by	occini)			
Accelerator voltage	ę	$V_{g4g2(\ell)}$	max. min.	800 400	V V
Focusing electrode	voltage	V_{g3}	max.	200	V
Control grid voltag	e, negative	-V _{g1}	max.	200	V
	positive	v_{g1}	max.	0	V
	positive peak	v_{g1_p}	max.	2	V
Cathode to heater v	roltage, positive	Vkf	max.	200	V
	negative	-V _{kf}	max.	125	V
Voltage between ac and any deflection	celerator electrode n plate	Vg4/x	max.	500	V
Screen dissipation		$v_{g4/y} \ w_{\ell}$	max.	500	V mW/cm ²
CIRCUIT DESIGN V	ALUES				
Control grid circui	t resistance	R_{g1}	max.	0,5	$M\Omega$
Deflection plate cir	cuit resistance	R_x, R_y	max.	5	MΩ
Focusing electrode	current	I_{g3}	-15 to	+10	μA^{2})

¹⁾ A graticule, consisting of concentric rectangles of 43, 2 mm x 43, 2 mm and 40 mm x 40 mm is aligned with the electrical x-axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.

²⁾ Values to be taken into account for the calculation of the focus potentiometer.

Remark: A contrast improving transparent conductive coating connected to $g_4g_2(\ell)$ is present between glass and fluorescent layer. This enables the application of a high potential to $g_4g_2(\ell)$ with respect to earth, without the risk of picture distortion by touching the face (electrostatic body-effect).

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube with symmetrical deflection, intended for monitoring purposes.

QUICK REFERENCE DATA

Final accelerator voltage	Vg4,g2,(ℓ)	500 V
Display area	Both directions full scan	
Deflection coefficient, horizontal	M _×	37 V/cm
vertical	My	21 V/cm

SCREEN

	Colour	Persistence
DG7-32	yellowish green	medium short

Useful diameter

Useful scan, horizontal

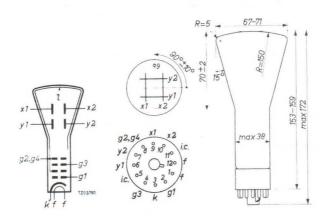
vertical

> 65 mm

full scan

HEATING

Indirect by a.c. or d.c.; parallel supply


Heater voltage

Heater current

Vf	6,3	V
If	300	mA

MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base Duodecal 12 pin

Dimensions and connections

See also outline drawing

see also outline alawing

Overall length < 172

Face diameter < 71 mm

Net mass approx. 120 g

Accessories

Mu-metal shield type 55530

mm

CAPACITANCES			
x ₁ to all other elements except x ₂	$C_{x1(x2)}$	3,7	pF
x2 to all other elements except x1	$C_{x2(x1)}$	3,0	pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	2,5	pF
y2 to all other elements except y1	$C_{y2(y1)}$	2,5	pF
x ₁ to x ₂	C_{x1x2}	1,7	pF
y ₁ to y ₂	C_{v1v2}	1,0	pF
Control grid to all other elements	C_{g1}	7,6	pF
Cathode to all other elements	c_k	3,2	pF
FOCUSING electrostatic			
DEFLECTION double electrostatic			
x plates symmetrical			
y plates symmetrical			
Angle between x and y traces $90^{\circ} \pm 1,5^{\circ}$			
LINE WIDTH			
Measured on a circle of 50 mm diameter			
Accelerator voltage	Vg4g2(1)	500	V
Beam current	\mathbf{I}_{ℓ}	0,5	μΑ
Line width	1. w.	0,4	mm
TYPICAL OPERATING CONDITIONS			
Accelerator voltage	$V_{g4g2(\ell)}$	500	V
Focusing electrode voltage	$V_{\mathbf{g}3}$ 0 t	0 120	V
Control grid voltage for visual extinction of focused spot	V _{g1} -50 t	o - 100	V
Deflection coefficient, horizontal vertical	M _X 33,3 t	o 41,5 o 23,2	V/cm V/cm
Geometry distortion	see no	te 1 (nex	t page)
Useful scan, horizontal	full sc	an	
vertical	full sc	an	

LIMITING VALUES	(Absolute max.	rating system)
-----------------	----------------	----------------

Accelerator voltage	$V_{g4g2(\ell)}$	max.	800	V
Accelerator voltage	9482(1)	min.	400	V
Focusing electrode voltage	V_{g3}	max.	200	V
Control grid voltage, negative	-V _{g1}	max.	200	V
positive	v_{g1}	max.	0	V
positive peak	Vglp	max.	2	V
Cathode to heater voltage, positive	Vkf	max.	200	V
negative	-V _{kf}	max.	125	V
Voltage between accelerator electrode				
and any deflection plate	$V_{g4/x}$	max.	500	V
	Vg4/y	max.	500	V
Screen dissipation	\mathbf{w}_{ℓ}	max.	3	mW/cm ²
CIRCUIT DESIGN VALUES				
Control grid circuit resistance	R_{g1}	max.	0,5	$M\Omega$
Deflection plate circuit resistance	R_x , R_y	max.	5	$M\Omega$
Focusing electrode current	I_{g3}	-15 to +10	0	μA^{2})

Remark: A contrast improving transparent conductive coating connected to $g_4g_2(\ell)$ is present between glass and fluorescent layer. This enables the application of a high potential to $g_4g_2(\ell)$ with respect to earth, without the risk of picture distortion by touching the face (electrostatic body-effect).

A graticule, consisting of concentric rectangles of 43,2 mm x 43,2 mm and 40 mm x 40 mm is aligned with the electrical x- axis of the tube. The edges of a raster will fall between these ractangles with optimum correction potentials applied.

²⁾ Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

Low accelerator voltage cathode-ray tube for monitoring purpose.

QUICK REFERENCE DATA

Accelerator voltage

Display area

Deflection coefficient, horizontal

vertical

Vg4,g2,y2,(ℓ)

Both directions full scan M_x 56,5

 M_{V}

56.5 V/cm

500 V

49 V/cm

SCREEN

	Colour	Persistence
DH3-91	green	medium short

Useful screen diameter

Useful scan, horizontal

vertical

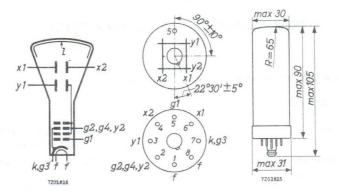
min. 28 mm

full scan

full scan

HEATING

Indirect by a.c. or d.c.; parallel supply


Heater voltage

Heater current

V_f 6,3 V

MECHANICAL DATA

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base:	English Loctal 8-pin			
Dimensions and connections				
See also outline drawing				
Overall length	<	105 mm		
Face diameter	<	30 mm		
Net mass:	approx.	39 g		
Accessories				
Mu-metal shield	type	55525		

CAPA	ACIT.	ANC	ES

x_1 to all other elements except x_2	$C_{x_1(x_2)}$	4,5	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x_2(x_1)}$	4,5	pF
\mathbf{y}_1 to all other elements except \mathbf{y}_2	$C_{y_1(y_2)}$	3,5	pF
x_1 to x_2	$C_{x_1x_2}$	1,0	pF
Control grid to all other elements	C_{g_1}	5,6	pF

FOCUSING

electrostatic self focusing

DEFLECTION x plates

double electrostatic symmetrical

y plates

asymmetrical

LINE WIDTH

Measured on a circle of 25 mm diameter

Accelerator voltage

Beam current

Line width

l.w. 0,6 mm

500 V

 $0.5 \mu A$

500 V

 $V_{g_4,g_2,y_2(\ell)}$

I(0)

TYPICAL OPERATING CONDITIONS

 $v_{g_4,g_2,y_2(\ell)}$ Control grid voltage for visual extinction -Vg1 8 to 27 V of focused spot

Deflection coefficient

Accelerator voltage

horizontal M_{x} 41 to 72 V/cm

 M_V vertical 35 to 63 V/cm Useful scan

horizontal full scan vertical full scan

LIMITING VALUES (Absolute max. rating system)

		max.	1000	V
Accelerator voltage	$v_{g_4, g_2, y_2(\ell)}$	min.	350	V
Control grid voltage				
negative	$-v_{g_1}$	max.	200	V
positive	v_{g_1}	max.	0	V
positive peak	$v_{g_{1p}}$	max.	2	V
Cathode to heater voltage				
cathode positive	$V_{+k/f}$	max.	200	V
cathode negative	$V_{-k/f+}$	max.	125	V
Screen dissipation	W _ℓ	max.	3	mW/cm^2

CIRCUIT DESIGN VALUES

Control grid voltage for visual extinction of				
focused spot	$-v_{g_1}$	16 to	54	V per kV of V_{g_4}, g_2, y_2
Déflection coefficient				
horizontal	M_X	90 to	120	V/cm per kV of Vg4, g2, y2
vertical	M_y	38,5 to 52	2,5	V/cm per kV of Vg4, g2, y2
Control grid circuit				
resistance	R_{g_1}	max.	1	$M\Omega$
Deflection plate circuit resistance	R_x , R_y	max.	5	ΜΩ

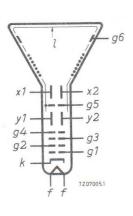
REMARK

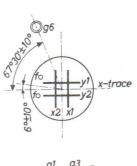
A contrast improving transparent conductive coating connected to the accelerator electrode is present between glass and fluorescent layer. This enables the application of a high potential with respect to earth to the accelerator electrode, without the risk of picture distortion by touching the face (electrostatic body-effect).

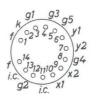
INSTRUMENT CATHODE-RAY TUBE

Oscilloscope tube with 7 cm diameter flat face and post deflection acceleration by means of a helical electrode. The low heater consumption together with the high sensitivity render this tube suitable for transistorized equipment.

QUICK REFERE	NCE DATA		
Final accelerator voltage	$V_{g6(l)}$	1200	V
Display area		4,5 x 6	cm^2
Deflection coefficient, horizontal	M_X	10,7	V/cm
vertical	M_{y}	3,65	V/cm


SCREEN					
		Colour	Persis	tence	
	DH7-11 DN7-11 DP7-11	green bluish green yellowish green	medium medium long		
Useful diam	eter		>	68	mm
Useful scan	at $V_{g6(\ell)}/V_{g4} = 4$,	horizontal	>	60	mm
		vertical	>	45	mm
HEATING:	Indirect by a.c. or	d.c.; parallel supply			
Heater volta	ige		v_{f}	6,3	V
Heater curr	ent		If	95	mA
MECHANICA	AL DATA				
Dimensions	and connections				
See also out	line drawing				
Overall leng	gth		<	296	mm
Face diamet	ter		<	77,8	mm


approx.


370

Net mass

Dimensions in mm

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base

14 pin all glass

Accessories

Socket (supplied with tube)	type	40467
Final accelerator contact connector	type	55563A
Mu-metal shield	type	55532

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{x1}(x2)$	4,0	pF
\mathbf{x}_2 to all other elements except \mathbf{x}_1	$C_{x2(x1)}$	4,0	pF
y1 to all other elements except y2	$C_{y1(y2)}$	3,5	pF
y_2 to all other elements except y_1	$C_{y2(y1)}$	3,5	pF
x ₁ to x ₂	C_{x1x2}	1,9	pF
y_1 to y_2	C_{y1y2}	1,7	pF
Control grid to all other elements	C_{g1}	5,7	pF
Cathode to all other elements	C_k	3,0	pF

1200

300

1200

2)

V

V

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates

symmetrical

y plates

symmetrical

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

90° ± 1° Angle between x and v traces

LINE WIDTH

HELIX

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage Vg6(1)

Astigmatism control electrode voltage V_{g4}

First accelerator voltage Vg2

Beam current Ip 10 uА

Line width 1.w. 0,65 mm

Post deflection accelerator helix resistance 40 MQ

TYPICAL OPERATING CONDITIONS

Final accelerator voltage 1200 $V_{g6(l)}$ 1) Geometry control electrode voltage 300 ± 30 V V_{g5}

300 + 402) Astigmatism control electrode voltage

 V_{Q4} - 15 Focusing electrode voltage 20 to 150 V

Vo3 First accelerator voltage 1200 V_{g2}

Control grid voltage for visual extinction of focused spot Vo.1 -30 to -80 V

Deflection coefficient, horizontal M_X 9,4 to 12 V/cm vertical M_{v} 3,2 to 4,1 V/cm Deviation of linearity of deflection 2 31 %

Geometry distortion see note 4 Useful scan, horizontal 60

mm vertical 40 mm

Notes see last page but one.


CIRCUIT	DESIGN	VALUES

Focusing voltage	v_{g3}	35 to 1	65	V per l	kV of V	g4		
Control grid voltage for visual extinction of focused spot	v_{g1}	-30 to -	60	V per l	kV of V	g2		
Deflection coefficient at $V_{g6(\ell)}/V_{g}$	$_4 = 4$							
horizontal	M_X	31,3 to	40,0	V/cm p	oer kV	of V _{g4}		
vertical	M_y	10,7 to	13,7	V/cm I	oer kV	of V _{g4}		
Control grid circuit resistance	R _{g1}	max. 1	, 5	$M\Omega$				
Deflection plate circuit resistance	R_{x} , R_{y}	max.	50	$k\Omega$				
Focusing electrode current	I_{g3}	-15 to +	-10	μA ⁵)				
LIMITING VALUES (Absolute max	. rating	system)						
Final accelerator voltage				Vg6(1)	max. min.	5000 1200	V V	
Geometry control electrode voltage	e			V_{g5}	max.	2200	V	
Astigmatism control electrode volt	age			Vg4	max. min.	2100 300	V V	
Focusing electrode voltage				V_{g3}	max.	1000	V	
First accelerator voltage				v_{g2}	max. min.	1600 800	V V	
Control grid voltage, negative			-	·V _{g1}	max.	200	V	
positive				v_{g1}	max.	0	V	
positive peak				v_{g1_p}	max.	2	V	
Cathode to heater voltage, positive	2			Vkf	max.	100	V	
negative	е		-	Vkf	max.	15	V	
Voltage between astigmatism contrant and any deflection plate	ol electr	ode		$V_{g4/x}$ $V_{g4/y}$	max. max.	500 500	V V	
Screen dissipation				W_{ℓ}	max.	3	W/c	m^2
Ratio $V_{g6(\ell)}/V_{g4}$			Vg6(1)	$/V_{g4}$	max.	4		

Notes see next page.

NOTES

- 1) This tube is designed for optimum performance when operating at the ratio $V_{g6(\ell)}/V_{g4} = 4$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.
- 2) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 3) The sensitivity at a defelction of less than 75% of the useful scan will not differ from the sensitivity of 25% of the useful scan by more than the indicated value.
- ⁴) A graticule consisting of concentric rectangles of 40, 8 mm x 40, 8 mm and 39, 2 mm x 39, 2 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum correction potentials applied.
- 5) Values to be taken into account for the calculation of the focus potentiometer.

INSTRUMENT CATHODE-RAY TUBE

10 cm diameter flat faced double gun oscilloscope tube, post-deflection acceleration by means of a helical electrode and low interaction between traces. The tube features beam-blanking.

QUICK REFERE	NCE DATA		
Final accelerator voltage	V _{g8} (1)	3000	V
Display area	horizontal f	full scan	cm
Deflection coefficient, horizontal	M_{X}	15	V/cm
vertical	M_{y}	7	V/cm

SCREEN

	colour	persistence
E10-12GH	green	medium short
E10-12GM	yellowish green	long
E10-12GP	bluish green	medium short

Useful screen diameter

min. 85 mm

Useful scan (each gun) at $V_{g_8}(\ell)/V_{g_5} = 3$

horizontal

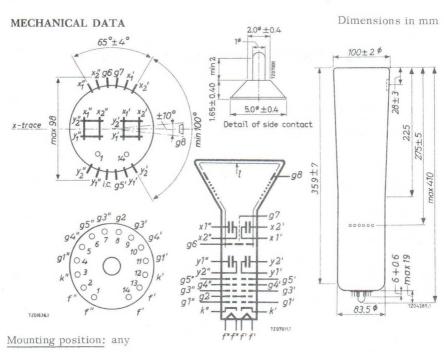
full scan

vertical

min. 70 mm

The useful scan may vertically be shifted to a max. of $5\ \mathrm{mm}$ with respect to the geometric centre of the face plate.

HEATING


Indirect by A.C. or D.C.; parallel supply

Heater voltage
Heater current

each gun

V_f 6.3 V

 I_f 300 mA

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base	14 pin all glass
Dimensions and connections	
Overall length	max. 410 mm
Face diameter	max. 102 mm
Net weight	approx. 800 g
Accessories	
Socket, supplied with tube	type 55566
Final accelerator contact connector	type 55563A
Side contact connector	type 55561
Mu-metal shield	type 55545

256

CAPACITANCES (each gun)

x_1 ' to all elements except x_2 '	$C_{x_1}'(x_2')$	4.5	pF
x_2 ' to all elements except x_1 '	$C_{x_2}'(x_1')$	3	pF
\mathbf{x}_1 " to all other elements except \mathbf{x}_2 "	$C_{x_1}''(x_2'')$	3	pF
\mathbf{x}_2 " to all other elements except \mathbf{x}_1 "	$C_{x_2}''(x_1'')$	4.5	pF
yl to all other elements except y2	$C_{y_1}(y_2)$	2	pF
\mathbf{y}_2 to all other elements except \mathbf{y}_1	$C_{y_2}(y_1)$	2	pF
x_1 to x_2	$C_{x_1x_2}$	2	pF
y1 to y2	$C_{y_1y_2}$	1.5	pF
Grid No.1 to all other elements	C_{g_1}	5.2	pF
Cathode to all other elements	Cle	5	nF

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x plates symmetrical y plates symmetrical

Angle between x and y traces

 $90 \pm 1^{\circ}$

Angle between x-traces ± 0.80 max. in the centre of the screen.

Angle between y-traces \pm 1° max. in the centre of the screen.

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

LINE WIDTH

Measured with the shrinking raster method in the centre of the screen.

Final accelerator voltage	Vg8(1)	3000	V
Astigmatism control electrode voltage	v_{g_5}	1000	V^3)
First accelerator voltage	v_{g_2}	1000	V
Beam current	$I_{g_8}(\ell)$	10	μA
Line width	1.w.	0.50	mm

HELIX

Post deflection accelerator helix resistance:	min.	100	$M\Omega$
Tost deflection accelerator nems resistance.	111111.	200	14100

³⁾ See last page.

TYPICAL OPERATING CONDITIONS (each gun	TYPICAL	OPERATING	CONDITIONS	(each gun)
--	---------	-----------	------------	------------

Final accelerator voltage		$V_{g_8}(\ell)$	3000	V
Intergun shield voltage		v_{g_7}	1000 <u>±</u> 100	V^{1})
Geometry control electrode	voltage	v_{g_6}	1000 <u>+</u> 100	$V^{1})^{2}$)
Astigmatism control electro	de voltage	v_{g_5}	1000 <u>±</u> 100	V^{3}
Focusing electrode voltage		v_{g_4}	180 to 380	V
Deflection blanking electrode	e voltage	v_{g_3}	1000	V
Deflection blanking control value beam blanking of a current		Δv_{g_3}	max. 40	V
First accelerator voltage		V_{g_2}	1000	V
Control grid voltage for visu of focused spot	nal extinction	v_{g_1}	-25 to -90	V
Deflection coefficient, horiz	ontal	M_X	12 to 18	V/cm
vertic	cal	M_y	6 to 8	V/cm
Deviation of linearity of defl	ection		max. 2.5	% ⁴)
Geometry distortion			See note 5	
Interaction factor			2.10-3	mm/Vdc 6)
Tracking error			1.5	mm 7)

 $[\]frac{1}{1},\frac{2}{3},\frac{3}{4},\frac{5}{5},\frac{6}{5},\frac{7}{5}$ See last page.

LIMITING	VALUES	(each gun,	if applicable)	(Absolute max.	rating system)
----------	---------------	------------	----------------	----------------	----------------

Final accelerator voltage	$V_{g_8}(\ell)$	max.	3300	V
	0	min.	2700	V
Intergun shield voltage	Vg7	max.	1200	V
Geometry control electrode voltage	v_{g_6}	max.	1200	V
Astigmatism control electrode voltage	v_{g_5}	max.	1200	V
110-10	85	min.	800	V
Focusing electrode voltage	V_{g_4}	max.	1200	V
Beam blanking electrode voltage	v_{g_3}	max.	1200	V
First accelerator voltage		max.	1200	V
Tilst accelerator voltage	v_{g_2}	min.	200	V
Control grid voltage,				
negative	$-v_{g_1}$	max.	200	V
positive	v_{g_1}	max.	0	V
positive peak	$v_{g_{1p}}$	max.	2	V
Cathode to heater voltage,	-1			
cathode positive	$v_{\mathbf{k}\mathbf{f}}$	max.	200	V
cathode negative	-V _{kf}	max.	125	V
Average cathode current	$I_{\mathbf{k}}$	max.	300	μ A
Screen dissipation	W_{ℓ}	max.	3	mW/cm^2
Ratio Vgg(1)/Vg5	$V_{g_0}(l)/V_{g_5}$	max.	3	

CIRCUIT DESIGN VALUES (each gun, if applicable)

Focusing voltage	Vg4	180 to 380	V/kV of V_{g_2}
Control grid voltage for visual cut-off focused spot	v_{g_1}	25 to - 90	V/kV of Vg ₂
Deflection coefficient $V_{g_8}(l)/V_{g_5} = 3$			
horizontal	M_X	10 to 20	V/cm per kV of Vg5
vertical	M_y	6 to 8	V/cm per kV of Vg5
Focusing electrode current	I_{g_4}	-15 to +10	μ A
Control grid circuit resistance	R_{g_1}	max. 1.5	$M\Omega$

260 June 1973

¹⁾ This tube is designed for optimum performance when operating at the ratio $V_{g_8}(\varrho)/V_{g_5}=3$. Operation at other ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage and the intergunshield voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.

²⁾ This voltage should be equal to the mean x- and y plates potential.

³⁾ The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.

⁴⁾ The sensitivity at a deflection of less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

⁵⁾ A graticule consisting of concentric rectangles of 60 mm x 60 mm and 57 mm x 57 mm is aligned with electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum potentials applied.

⁶) The deflection of one beam when balanced dc voltage are applied to the deflection plates of the other beam, will not be greater than the indicated value.

⁷⁾ With 50 mm vertical traces superimposed at the tube face centre and deflected horizontally ± 4 cm by voltages proportional to the relative deflection factors, horizontal separation of the corresponding points of the traces shall not be greater than the indicated value.

INSTRUMENT CATHODE-RAY TUBE

 $10\ \mathrm{cm}$ diameter metal-backed flat-faced double gun oscilloscope tube with post-deflection acceleration by means of a helical electrode and low interaction between beams.

QUICK REFEREN	ICE DATA	
Final accelerator voltage	V _{g8} (1)	4000 V
Display area	horizontal vertical	full scan 7 cm
Deflection coefficient, horizontal	M_{X}	17 V/cm
vertical	M_y	7.4 V/cm

SCREEN

	Colour	Persistence
E10-130GH	green	medium short
E10-130GM	yellowish green	long
E10-130GP	bluish green	medium short

Useful screen diameter

min. 85 mm

Useful scan (each gun) at $V_{g_8}(\ell)/V_{g_5} = 4$

horizontal full scan

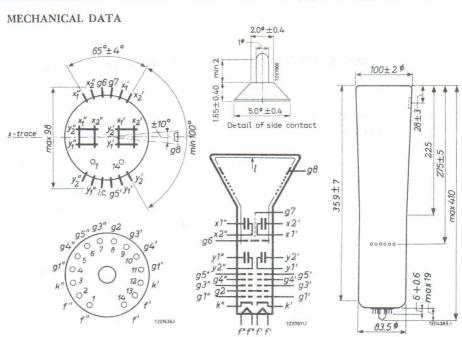
vertical

min. 70 mm

The useful scan may be shifted vertically to a maximum of $5\ \mathrm{mm}$ with respect to the geometric centre of the face plate.

HEATING

Indirect by A.C. or D.C.; parallel supply


Heater voltage

6.3 V

Heater current

I_f 300 mA

E10-130..

Mounting position: any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube.

Base		14 pin, all g	glass
Dimensions and connections			
Overall length		max.	410 mm
Face diameter		max.	102 mm
Net weight		approx.	800 g
Accessories			
Socket, supplied with tube		type	55566
Final-accelerator contact connector		type	55563A
Side contact connector		type	55561
Mu-metal shield		type	55545

max. 0.6

max. 1

CAPACITANCES

x ₁ ' to all other elemen	ts except x2'	$C_{x_1}'(x_2')$	4.5	pF	
x_2 ' to all other elemen	ts except x1'	$C_{x_2}'(x_1')$	3	pF	
x1" to all other elemen	ts except x2"	$C_{x_1}''(x_2'')$	3	pF	
x2" to all other elemen	ts except x1"	$C_{x_2}''(x_1'')$	4.5	pF	
yl to all other element	s except y ₂	$C_{y_1}(y_2)$	2	pF	
y2 to all other element	s except y ₁	$C_{y_2}(y_1)$	2	pF	
x ₁ to x ₂		$C_{\mathbf{x_1x_2}}$	2	pF	
y ₁ to y ₂		$C_{y_1y_2}$	1.5	pF	
Grid No.1 to all other	elements	c_{g_1}	5.2	pF	
Cathode to all other ele	ements	$C_{\mathbf{k}}$	5	pF	
FOCUSING	Electrostatic				
DEFLECTION	Double electrostatic				
x plates	symmetrical				
y plates	symmetrical				
Angle between x and	y traces (each gun)		90 ± 1	0	

If use is made of the full deflection capabilities of the tube the deflection plates will intercept part of the electron beam; hence a low impedance deflection plate drive is desirable.

LINE WIDTH

Angle between corresponding x traces at the centre of the screen

Angle between corresponding y traces

at the centre of the screen

Measured with the shrinking-raster method in the centre of the screen.

Final accelerator voltage	$V_{g_8}(\ell)$	4000	V	
Astigmatism-control electrode voltage	V_{g5}	1000	V 2)	
First accelerator voltage	v_{g_2}	1000	V	
Beam current	$I_{g_8}(\ell)$	10	μ A	
Line width	1.w.	0.4	mm	
HELIX				
Post-deflection accelerator helix resistance		min. 100	$M\Omega$	

²⁾ See last page.

_							
	TYPICAL OPERATING CONDITIONS (each gun, if applicable)						
	Final accelerator voltage	$V_{g_8}(l)$	4000	V			
	Intergun shield voltage	V_{g_7}	1000+100	V 1)			
	Geometry-control electrode voltage	v_{g_6}	1000 <u>+</u> 100	V 1)			
	Astigmatism-control electrode voltage	v_{g_5}	1000+100	V 2)			
	Focusing electrode voltage	v_{g_4}	200 to 320	V			
	Deflection-blanking electrode voltage	'84 V-	1000	V			
	Deflection blanking control voltage for	V_{g_3}	1000	•			
	blanking a beam current $I_{g_8}(\ell) = 10 \ \mu A \Delta$	V_{σ_2}	max. 40	V			
	First accelerator voltage	v_{g_2}	1000	V			
	Control grid voltage for extinction	82					
	of focused spot	v_{g_1}	-25 to -90	V			
	Deflection coefficient, horizontal	M_X	14 to 20	V/cm			
	vertical	M_{y}	6.4 to 8.4	V/cm			
	Deviation of linearity of deflection		max. 2	% ³)			
	Geometry distortion		see note 4				
	Interaction factor		max. 2.10^{-3}	mm/V_{DC}^{5})			
	Tracking error		1.2	mm ⁶)			
	LIMITING VALUES (each gun, if applicab	le) (Absolute	max. rating sys	stem)			
	Final accelerator voltage	$V_{g_8}(l)$	max. 5000	V			
	rmar accelerator voltage	88.	min. 2700	V			
	Intergun shield voltage	Vg7	max. 1200	V			
	Geometry control electrode voltage	v_{g_6}	max. 1200	V			
	Astigmatism control electrode voltage	v_{g_5}	max. 1200	V			
		03	min. 800	V			
	Focusing electrode voltage	v_{g_4}	max. 1200	V			
	Beam blanking electrode voltage	V_{g_3}	max. 1200	V			
	First accelerator voltage	v_{g_2}	max. 1200	V			
	Till the description of the second	32	min. 200	V			
	Control grid voltage, negative	$-v_{g_1}$	max. 200	V			
	positive	v_{g_1}	max. 0	V			
	Cathode to heater voltage,	37	105	V			
	cathode positive cathode negative -	V _{kf} -V _{kf}	max. 125	V			
	Average cathode current		max. 300	μA			
	Screen dissipation	I _k W ₀	max. 3	mW/cm ²			
		~		III VV / CIII 2			
	Ratio Vg8(1)/Vg5	$V_{g_8}(l)/V_{g_5}$	max. 4				

 $[\]frac{1}{1},\frac{2}{3},\frac{3}{4},\frac{4}{5},\frac{5}{6}$) See next page.

CIRCUIT DESIGN VALUES (each gun, if applicable)

v_{g_4}	200 to 320 V $$ per kV of V_{g_2}
v_{g_1}	-25 to -90 V per kV of V_{g_2}
M_X	14 to 20 V/cm per kV of V_{g_5}
M_y	6.4 to 8.4 V/cm per kV of V_{g_5}
I_{g_4}	-15 to $+10~\mu\mathrm{A}$
R_{g_1}	max. $1.5 \mathrm{M}\Omega$
	V_{g_1} M_{x} M_{y} I_{g_4}

¹) This tube is designed for optimum performance when operating at the ratio $V_{g_8}(\ell)/V_{g_5}$ = 4. Operation at higher ratio may result in changes in deflection uniformity and geometry distortion. The geometry control electrode voltage and the intergun shield voltage should be adjusted for optimum performance. For any necessary adjustment its potential will be within the stated range.

²⁾ The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.

³) The sensitivity at a deflection of $\leq 75\%$ of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.

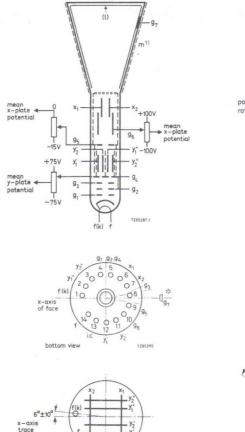
⁴⁾ A graticule consisting of concentric rectangles of 60 mm x 60 mm and 57.5 mm x 57.5 mm is aligned with the electrical x axis of the tube. The edges of a raster will fall between these rectangles with optimum potentials applied.

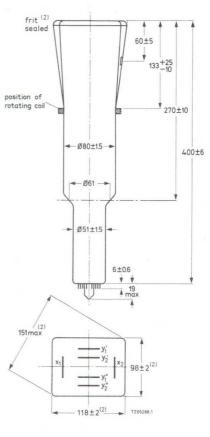
⁵⁾ The deflection of one beam when balanced DC voltages are applied to the deflection plates of the other beam, will not be greater than the indicated value.

 $^{^6}$) With 50 mm vertical traces superimposed at the tube face centre and deflected horizontally ± 4 cm by voltages proportional to the relative deflection factors, horizontal separation of the corresponding points of the traces will not be greater than the indicated value.

INSTUMENT CATHODE-RAY TUBE

 $14\ \mathrm{cm}$ diagonal, rectangular flat faced, split-beam oscilloscope tube with mesh and metal-backed screen.


QUICK REFER	ENCE DATA		
Final accelerator voltage	Vg7(l)	10	kV
Display area		100 x 80	mm^2
Deflection coefficient, horizontal vertical	M_{X} M_{Y}	13,5 9	V/cm V/cm
	My''	9	V/cm
Overlap of the systems		100	%


SCREEN: Metal-backed phosphor

SCREEN: Metal-	backed phospho	c			
		Colour	Persisten	ce	
	E14-100GH	green	medium s	hort	
Useful screen dimensions		min.	100 x 80	mm^2	
Useful scan at Vg	$g7(\ell)/V_{g2,g4} = 6$, 7			
	horizontal		min.	100	mm
vertical (each system)		min.	80	mm	
overlap			100	%	
Spot eccentricity in horizontal direction		max.	7	mm	
	in vertical dire	ction	max.	10	mm
HEATING : indire	ect by A.C. or D	.C.;parallel sup	pply		
Heater voltage			$v_{\mathbf{f}}$	6,3	V
Heater current		I_{f}	300	mA	

MECHANICAL DATA

Dimensions in mm

(1) The external conductive coating should be earthed.

7265286.1

- (2) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 2 mm.
- * The centre of the contact is located within a square of $10~\mathrm{mm} \times 10~\mathrm{mm}$ around the true geometrical position.

Mounting position: any

bottom view

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube. MECHANICAL DATA (continued)

Dimensions and connections

See also outline drawing.

Overall length (socket included)

Face dimensions

max.

425 mm $120 \times 100 \text{ mm}^2$

Net weight

approx.

900 g

Base

14-pin all glass

Accessories

Socket (supplied with tube)
Final accelerator contact connector

type type 55566 55563A

FOCUSING

Electrostatic

DEFLECTION

Double electrostatic

x-plates y-plates

symmetrical symmetrical

If the full deflection capacity of the tube is used, part of the beam is intercepted by the deflection plates; hence a low-impedance deflection plate drive is desirable.

Angle between x and y traces (each beam)

90 ± 1 ° 45 '

Angle between corresponding y traces at screen centre Angle between x trace and horizontal axis of the face

max.

0 0

269

See last page but one

LINE WIDTH

Measured with the shrinking raster method under typical operating conditions, and adjusted for optimum spot size at a beam current of 5 $\mu\!A$ per system.

Line width at screen centre

1.w approx. 0,35 mm

CAPACITANCES

x1 to all other elements except x2 8 pF $C_{x_1(x_2)}$ x2 to all other elements except x1 8 pF $C_{x2}(x_1)$ y1' to all other elements except y2' Cv1'(v2') 4 pF y2' to all other elements except y1' $C_{y2'}(y_{1'})$ 5,5 pF y1" to all other elements except y2" Cy1"(v2") 5 pF y2" to all other elements except y1" 4 pF Cv2"(v1") $C_{\rm m}$ External conductive coating to all other elements 800 pF

April 1984

CAPACITANCES (continued)

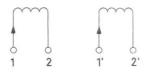
 x_1 to x_2 $C_{x_1}x_2$ 3 pF y_1' to y_2' $C_{y_1'y_2'}$ 1 pF $y_{1''}$ to $y_{2''}$ $C_{y_1''y_2''}$ 1 pF Control grid to all other elements C_{x_1} 6 pF

Cathode and heater to all other elements $C_{kf/R}$ 3 pF

NOTES

This tube is designed for optimum performance when operating at a ratio $V_{g7(\ell)}/V_{g2}$, g_4 = 6,7.

The geometry control voltage $\rm V_{g6}$ should be adjusted within the indicated range (values with respect to the mean x-plate potential).


- $^2)$ A negative control voltage on $\rm g_5$ (with respect to the mean x-plate potential) will cause some pincushion distortion and less background light. By varying the two voltages $\rm V_{g5}$ and $\rm V_{g6}$ it is possible to find the best compromise between background light and raster distortion.
- 3) The astigmatism control electrode voltage should be adjusted for optimum spot shape. For any necessary adjustment its potential will be within the stated range.
- 4) The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 5) A graticule, consisting of concentric rectangles of 100 mm x 80 mm and 96 mm x 77 mm is aligned with the electrical x-axis of the tube. With optimum correction potentials applied a raster of each system will fall between these rectangles.

							-
	TYPICAL OPERATING CONDITIONS						
	Final accelerator voltage	Vg7(1)		10	kV		
	Geometry control electrode voltage	V_{g6}	1500	± 100	V	¹)	
	Interplate shield voltage	v_{g_5}		1500	V		
	Background illumination control voltage	ΔV_{g_5}	0 t	co -15	V	²)	
	Focusing electrode voltage	V_{g_3}	350	to 650	V		
	First accelerator voltage	v_{g_2, g_4}		1500	V		
	Astigmatism control voltage	ΔV_{g2} , g_4		±75	V	3)	
	Control grid voltage for extinction of focused spot	v_{g_1}	-20	to -70	V		
	Deflection coefficient, horizontal	M _X	<	12,5 14	V/cm V/cm		
	vertical	My'	<	9 10	V/cm V/cm		
		My''	<	9 10	V/cm V/cm		
	Deviation of deflection linearity		<	2	%	⁴)	
	Geometry distortion		see no	te ⁵)			
	Useful scan, horizontal vertical		> >	100 80	mm mm		
	Overlap of the two systems, horizontal vertical			100 100	%		
	LIMITING VALUES (Absolute max. rating syste	m)					
	Final accelerator voltage	Vg7(1)	max. min.	12 9	kV kV		
	Geometry control electrode voltage	V_{g6}	max.	2200	V		
	Interplate shield voltage	v_{g_5}	max.	2200	V		
	Focusing electrode voltage	v_{g_3}	max.	2200	V		
	First accelerator and astigmatism control electrode voltage	Vg2, g4	max. min.	2200 1350	V V		
	Control grid voltage	-Vg1	max.	200	V V		
	Voltage between astigmatism control electrode and any deflection plate	V _{g4} /x V _{g4} /y	max.	500 500	V V		
	Grid drive average		max.	30	V		
	Screen dissipation	W l	max.	8	mW/c	m^2	
	Ratio Vg7(1)/Vg2, g4	Vg7(l)/Vg2, $g4$	max.	6,7			
	Control grid circuit resistance	Rg1	max.	1	MΩ		
_							-

CORRECTION COILS

General


The E14-100GH is provided with a pair of coils for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

The image rotating coils are wound concentrically around the tube neck. Under typical operating conditions 50 A turns are required for the maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 30 mA per coil is required which can be obtained by using a 24 V supply when the coils are connected in series, or a 12 V supply when they are in parallel.

Connecting the coils

The coils have been connected to the 4 soldering tags as follows:

BEAM CENTRING MAGNET

Inherent to the split-beam system a slight difference between the two beam currents can occur after splitting, resulting in different intensities of the two traces. In order to equalize the beam currents, a beam centring magnet should be mounted near the base of the gun and adjusted for the required field direction and field strength.

INSTRUMENT CATHODE-RAY TUBE

The E14-101GH is equivalent to the E14-100GH but has no rotating coil.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced direct-view storage tube with variable persistence and internal graticule, intended for oscilloscope applications.

OHICK	DEEL	ERENCE	DATA

Final accelerator voltage	V _{g10} (ℓ)	8,5	kV
Display area (10 x 8 divisions of 9 mm)		90 x 72	mm ²
Deflection coefficient			
horizontal	M_{\times}	9,5	V/div
vertical	My	4,1	V/div
Writing speed		2,5	div/μs

OPTICAL DATA

Screen

type persistence, non-store mode persistence, store mode	ersistence, non-store mode medium-s			
Useful screen dimensions	min.	90 x 72	mm	
Useful scan horizontal vertical	min. min.	90 72	mm mm	
Spot eccentricity in horizontal	max.	6	mm	

The scanned raster can be shifted and aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer.

HEATING

Writing section

Indirect by a.c. or d.c.; parallel supply

Heater voltage	Vf	6,3	V
Heater current	1,5	300	mA

Viewing section

Heater voltage

Indirect by d.c.; parallel supply

Troutor vortage	v †	0,0	٧
Heater current	l _f '	300	mA
Heater voltage	V _{f''}	6,3	V
Heater current	Lett	300	mΔ

1/...

62

metal backed phosphor

L14-111GH/55

MECHANICAL DATA

Mounting position

any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress.

Net mass	approx. 1,1 kg
Base	14 pin, all glass

Dimensions and connections

See also outline drawing

Overall length (socket included)
Face dimensions

Accessories

Socket (supplied with tube)
Side contact connector (14 required)
Small ball contact connector (3 required)

FOCUSING
DEFLECTION
x-plates

y-plates

Angle between x and y-traces

Angle between x-trace and x-axis of

the internal graticule
See also Correction coils

type 4022 102 21590
electrostatic
double electrostatic
symmetrical
symmetrical

445

55566

55561

mm

100 x 120 mm

max.

max.

type

type

900

00

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{x1}(x2)$	6,5	pF	
x ₂ to all other elements except x ₁	C _{x2(x1)}	6,5	pF	
y ₁ to all other elements except y ₂	C _{y1(y2)}	3	pF	
y ₂ to all other elements except y ₁	C _{y2(y1)}	3	pF	
x ₁ to x ₂	C _{x1x2}	2,5	pF	
y ₁ to y ₂	Cy1y2	2	pF	
g ₁ to all other elements	C _{g1}	5,5	pF	
g ₁ ['] to all other elements	C _{g1′}	5,5	pF	
g ₁ " to all other elements	Cg1"	5,5	pF	
k to all other elements	Ck	4,5	pF	
k' to all other elements	C _k ′	5	pF	
k" to all other elements	Ck"	5	pF	
g ₇ to all other elements	C _{g7}	40	pF	
gg to all other elements	C _g 9	75	pF	

DIMENSIONS AND CONNECTIONS

Dimensions in mm

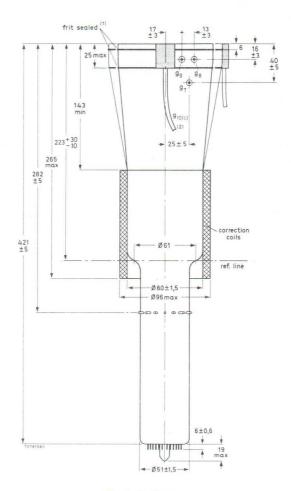


Fig. 1 Outlines.

- (1) The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm.
- (2) Minimum length of cable: 420 mm.

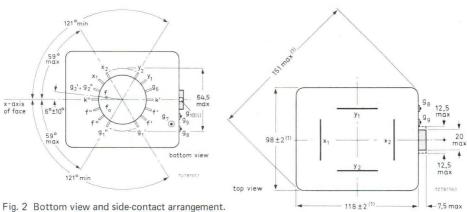


Fig. 2 Bottom view and side-contact arrangement.

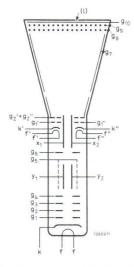


Fig. 4 Electrode configuration.

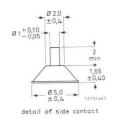


Fig. 6 Detail of side contact

Fig. 3 Top view.

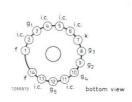


Fig. 5 Pin arrangement; bottom view.

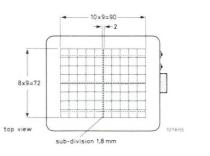


Fig. 7 Internal graticule colour of graticule: brown-black; line width : 0,15 mm;

dot diameter

: 0,3 mm.

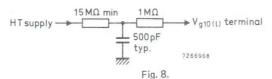
TYPICAL OPERATION (for notes see page 284)				
Conditions				
Writing section (voltages with respect to writing gui	n cathode k)			
Final accelerator voltage	V _{q10} (ℓ)	8500	V	note 1
Geometry control electrode voltage	V _{g6}	1500 ± 100	V	
Deflection plate shield voltage	V_{g5}	1500	V	note 2
Astigmatism control electrode voltage	V _{g4}	1500 ± 50	V	
Focusing electrode voltage	V _{g3}	400 to 600	V	
First accelerator voltage	V_{g2}	1500	V	
Control grid voltage for visual extinction of focused spot	V_{g1}	−40 to −80	V	
Viewing section (voltages with respect to viewing gu	un cathodes k' and	k'')		
Final accelerator voltage	V _{q10} (ℓ)	7050	V	note 1
Backing electrode voltage,	3			
storage operation	V _g 9	0 to 5	V	
non-storage operation	V _g 9	-35	V	
Collector voltage	V _{g8}	150	V	
Collimator voltage	V _{g7}	30 to 120	V	note 3
First accelerator voltage	V_{g2}', V_{g2}''	50	V	note 4
Control grid voltage for cut-off	V _{g1} ′, V _{g1} ′′	−30 to −70	V	
Cathode current (each viewing gun)	Ι _κ ΄, Ι _κ ΄΄	0,4	mA	
Performance				
Useful scan				
horizontal		min. 90	mm	
vertical		min. 72	mm	
Deflection coefficient		9,5	V/div	
horizontal	M _×	max. 10,5	V/div	
vertical	My	4,1	V/div V/div	
Line width at the centre of the screen	l.w.	max. 4,4 0.35	mm	note 5
		,		
Writing speed in store mode	0	ater than 250		note 6
Storage time	gre	ater than 1,5	min	note 7
Deviation of linearity of deflection		max. 2	%	note 8
Geometry distortion		see note 9		
Grid drive for 10 μA beam current		≈ 25	V	

LIMITING VALUES (Absolute maximum rating system)

Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	V _{g10} (ℓ)	max. min.	9500 7000	V
Geometry control electrode voltage	V _{g6}	max.	2100	V
Deflection plate shield voltage	V_{g5}	max.	2000	V
Astigmatism control electrode voltage	V_{g4}	max. min.	2100 1200	V
Focusing electrode voltage	V_{g3}	max.	1000	V
First accelerator voltage	V_{g2}	max. min.	2000 1250	V
Control grid voltage positive negative	∨ _{g1} −∨ _{g1}	max.	0 200	V V
Cathode to heater voltage positive negative	V _{kf} -V _{kf}	max. max.	125 125	V
Voltage between astigmatism control electrode and any deflection plate	V _g 4/x V _g 4/y	max. max.	500 500	V
Average grid drive	3 . 7	max.	30	V
Viewing section (voltages with respect to viewing gu	n cathodes k' and k'' un	less otherwis	se specifi	ed)
Final accelerator voltage	$V_{g10}(\ell)$	max. min.	8000 5500	V
Backing electrode voltage, storage operation	V_{g9}	max. min.	5	V

Backing electrode voltage, storage operation	V_{g9}	max. min.	5	V
non-storage operation	$-V_g9$	max. min.	50 25	V
Collector voltage	V_{g8}	max. min.	180 120	V
Collimator voltage	V _{g7}	max. min.	200	V


60 max. $V_{g2}^{\prime}, V_{g2}^{\prime\prime}$ First accelerator voltage 40 min.

Cathode to heater voltage $V_{k'f'}, V_{k''f''}$ $-V_{k'f'}, -V_{k''f''}$ 125 max. positive 125 negative max. Control grid voltage

 $V_{g1}', V_{g1}'' - V_{g1}'' - V_{g1}''$ max. 0 positive 200 max. negative

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying 0,5 mA. To protect the tube against excessive surge current during erasure, an adequately dimensioned RC-network must be connected in series with the screen terminal lead (Fig. 8).

- This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
- The collimator electrode voltage should be adjusted for optimum uniformity of background illumination.
- 4. The voltage V_{q2}' , V_{q2}'' should be equal to the mean x-plate potential.
- 5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_b = 10 \,\mu\text{A}$ (measured against x-plates).
- 6. The writing speed is defined as the maximum speed at which a written trace is just visible, starting from a background which is just black. The indicated value is guaranteed for the total graticule area, with the exception of maximum 5% in each corner. The writing speed can be increased to approx. 2,5 div/µs if some background is tolerated.
- 7. The storage time is defined as the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
- 8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 9. A graticule, consisting of concentric rectangles of 88 mm x 70 mm and 86 mm x 68,5 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

CORRECTION COILS

General

The L14-111GH/55 is provided with a coil unit (see Fig. 9) consisting of:

- a pair of coils L3 and L4 which enable the angle between the x and y-traces at the centre of the screen to the made exactly 90° (orthogonality correction);
- a pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

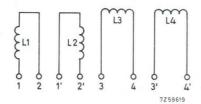


Fig. 9 Diagram of coil unit.

Orthogonality (coils L3 and L4)

The current required under typical operating conditions without a mu-metal shield being used is max. 20 mA for complete correction of orthogonality. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of the coil is approx. 225 Ω .

Image rotation (coils L1 and L2)

The image rotation coils are wound concentrically around the tube neck. Under typical operating conditions 22 ampere-turns are required for maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 12,5 mA per coil is required which can be obtained by using a 12 V supply when the coils are connected in series or a 6 V supply when they are in parallel.

Connecting the coils

The coils have been connected to 8 solder tags according to Fig. 10.

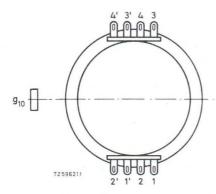


Fig. 10 Bottom view.

With L3 and L4 connected in series according to Fig. 11 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti-clockwise rotation of the horizontal trace.

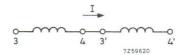


Fig. 11.

OPERATING NOTES

Modes of operation

Store mode

a. Dynamic erasure (variable persistence)

Dynamic erasure can be achieved by applying erasing pulses of positive polarity to the backing electrode. The pulse amplitude required is approximately $9V \le 15 V$ and the persistence of a stored display can be controlled by varying the duty factor of these pulses.

b. Static erasure.

If no dynamic erasing pulses are applied, the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, the backing electrode should first be connected to the collector electrode voltage and then returned to its original potential for about 100 ms; after that, an erasing pulse of positive polarity and a duration of not less than 300 ms should be applied. For the adjustment of the amplitude of this pulse see Procedure of adjustment.

Non-store mode

For non-store operation, it is sufficient to make the backing electrode about 35 V negative with respect to the viewing gun cathodes. The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Procedure of adjustment

- a. Adjust the cathode current of each viewing gun to 0.4 mA by means of its control grid voltage.
- b. Adjustment of the erasing pulse amplitude (static erasure)

The pulse amplitude should be just sufficient to suppress any background illumination at the centre of the display area (this adjustment should be done under low ambient light conditions). Data on storage time and maximum writing speed are based on erasure to "just black". A larger pulse amplitude (erasure to "blacker than black") yields a longer storage time at the expense of maximum writing speed. On the other hand, writing speed can be increased if some background illumination is tolerated. To erase to "just black" the amplitude of this pulse is approximately 9 V.

c. Adjustment of the collimator voltage

With dynamic erasing pulses applied and a persistence control setting that yields a convenient background illumination intensity, the collimator voltage is adjusted for optimum background uniformity. This voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage is too high or too low, there is a decrease of intensity at the four corners or at the centres of the vertical edges of the display area respectively. For a good erasure of the display, the collimator voltage should be as low as possible.

INSTRUMENT CATHODE-RAY TUBE

14 cm-diagonal rectangular flat-faced direct-view storage tube with split-beam writing gun, variable persistence and internal graticule, intended for oscilloscope applications.

QUICK REFERENCE DATA

Final accelerator voltage	V _{q10} (ℓ) 8,	5 kV
Useful scan (10 x 8 divisions of 9 mm)	90 × 7	2 mm
Deflection coefficient horizontal vertical, system 1 vertical, system 2	$M_{\mathbf{y}'}$ 8	5 V/div 5 V/div 5 V/div
Overlap of the systems	10	0 %
Writing speed	1,2	5 div/μs
OPTICAL DATA		9
Screen type persistence, non-store mode persistence, store mode	metal-backed phosp GH, colour green medium short variable	nor
Useful screen dimensions	min. 90 x 7	2 mm
Useful scan horizontal vertical (each system) overlap	min.	00 mm 12 mm 00 %
Spot eccentricity		

The scanned raster can be aligned with the internal graticule by means of correction coils fitted around the tube by the manufacturer.

HEATING

Writing section

in horizontal direction

in vertical direction

Indirect by a.c. or d.c.; parallel supply Heater voltage Heater current	V _f I _f	6,3 V 300 mA
Viewing section		

indirect by d.c.; parallel supply		
Heater voltage	V _f ′	6,3 V
Heater current	l _f '	300 mA
Heater voltage	V _f ''	6,3 V
Heater current	l _f ''	300 mA

6 mm

9 mm

max.

max.

L14-131GH/55

MECHANICAL DATA

Mounting position

any

The tube should not be supported by the base alone and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress.

Net mass

approx.

Base

14 pin, all glass

Dimensions and connections

Overall length (socket included)

See also outline drawing

max.

445 mm

1,1 kg

Face dimensions

max.

100 x 120 mm

Accessories

Socket (supplied with tube)

type 55

55566 55561

Side contact connector (16 required)

type type

4022 102 21590

Small ball contact connector (3 required)

electrostatic

FOCUSING DEFLECTION

Cicotiostatio

DEFLECTION

double electrostatic symmetrical

x-plates y-plates

symmetrical

If use is made of the full deflection capabilities of the tube, the deflection plates will block part of the electron beams, hence a low impedance deflection plate drive is desirable.

Angle between x and y traces, each beam

900

Angle between x-trace and x-axis of the internal graticule

00

Angle between corresponding y-traces at the centre

of the screen

max.

45'

CAPACITANCES

W	ri	tin	1 500	ction

x₁ to all other elements except x₂

x2 to all other elements except x1

y1' to all other elements except y2'

y2' to all other elements except y1"

y1" to all other elements except y2"

y2" to all other elements except y1"

x1 to x2

y1' to y2'

Y1" to Y2"

g₁ to all other elements

k to all other elements

Viewing section

g1' to all other elements g1" to all other elements

to all other elements

k" to all other elements to all other elements 97

to all other elements 99

6,5 pF $C_{\times 1}(\times 2)$ $C_{\times 2(\times 1)}$

6,5 pF Cy1'(y2') 5 pF

6 pF Cy2'(y1') 6 pF Cy1"(y2") Cy2"(y1") 5 pF

2,5 pF $C_{x1}x2$ 0,6 pF Cy1'y2'

C_{V1''V2''} 0,6 pF 5,5 pF C_{q1} Ck 4,5 pF

Ca1' 5,5 pF Cq1" 5,5 pF

Ck' 5 pF Ck" 5 pF C_q7 45 pF 75 pF Cq9

Dimensions in mm

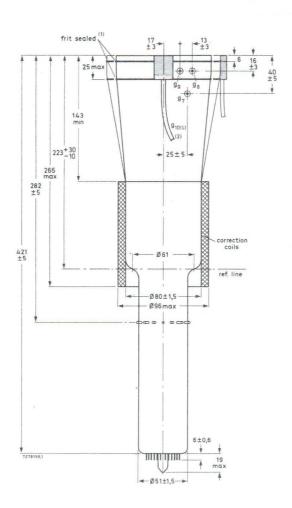


Fig. 1 Outlines.

- (1) The bulge at the frit seal may increase the indicated maximum dimensions (Fig. 3) by not more than 3 mm.
- (2) Minimum length of cable: 420 mm.

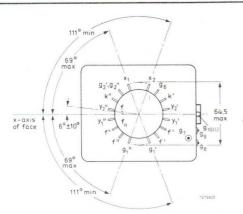


Fig. 2 Bottom view and side-contact arrangement.

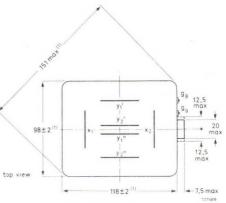


Fig. 3 Top view.

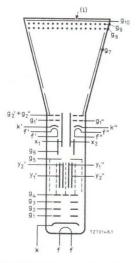


Fig. 4 Electrode configuration.

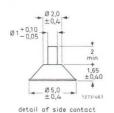


Fig. 6 Detail of side contact.

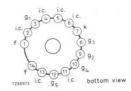


Fig. 5 Pin arrangement; bottom view.

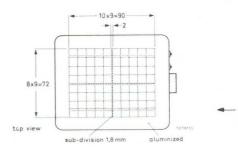


Fig. 7 Internal graticule. Colour: brown-black; line width: 0,15 mm; dot diameter: 0,3 mm.

TYPICAL OPERATION (for notes see page 294)					
Conditions					
Writing section (voltages with respect to writing gun ca	athode k)				
Final accelerator voltage	$V_{q10}(\ell)$		3500	V	note 1
Geometry control electrode voltage	V_{q6}	1500 ±	100	V	
Deflection plate shield voltage	V_{g5}		1500	V	note 2
Astignatism control electrode voltage	V_{g4}	1500	± 75	V	
Focusing electrode voltage	V_{g3}	400 to	650	V	
First accelerator voltage	V_{g2}		1500	V	
Control grid voltage for visual extinction of focused spot	V_{g1}	-40 to	-80	V	
Viewing section (voltages with respect to viewing gun	cathode k' and	d k'')			
Final accelerator voltage	V _{q10} (ℓ)	1.16	7050	V	note 1
Backing electrode voltage,	3.0				
storage operation	V_{g9}		1	V	
non-storage operation	V_{g9}		-35	V	
Collector voltage	V_{g8}		150	V	
Collimator voltage	V _g 7	30 to	120	V	note 3
First accelerator voltage	$V_{g2'}, V_{g2''}$		50	V	note 4
Control grid voltage for cut-off	$V_{g1'}, V_{g1''}$	-30 to	-70	V	
Cathode current (each viewing gun)	1k', 1k''		0,4	mA	
Performance					
Useful scan					
horizontal		min.		mm	
vertical		min.	72	mm	
Deflection coefficient	NA		9,5	V/div	
horizontal	M_{\times}	max.	10,5	V/div	
vertical, system 1	M _V ′	ma a 1 /		V/div	
	,	max.		V/div	
vertical, system 2	My"	max.		V/div V/div	
Line width at the centre of the screen	1.w.		0,40	mm	note 5
Writing speed in store mode		greater than	125	div/ms	note 6
Storage time		greater than	1,5	min	note 7
Deviation of linearity of deflection		max.	2	%	note 8
Geometry distortion		see not	e 9		
Grid drive for 5 μ A beam current, per system		approx	. 30	V	

LIMITING VALUES (Absolute maximum rating system)

Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	٧ _{g10} (٤)	max. min.	9500 7000	
Geometry control electrode voltage	V_{g6}	max.	2100	V
Deflection plate shield voltage	V_{g5}	max.	2000	٧
Astigmatism control electrode voltage	V _{g4}	max. min.	2100 1200	
Focusing electrode voltage	V_{g3}	max.	1000	٧
First accelerator voltage	V _{g2}	max. min.	2000 1250	
Control grid voltage positive	V_{g1}	max.	0	V
negative	$-V_{g1}$	max.	200	V
Cathode to heater voltage	V	may	125	V
positive negative	V _{kf} -V _{kf}	max.	125	
Voltage between astigmatism control electrode	* KT	maxi	120	
and any deflection plate	V _{g4/x} V _{g4/y}	max.	500 500	
Average grid drive	9777	max.	30	V
Viewing section (voltages with respect to viewing gun cathodes	k' and k'' unless o	therwise	specifi	ed)
Final accelerator voltage	V _{g10} (ℓ)	max. min.	8000 5500	
Backing electrode voltage, storage operation	V _g 9	max. min.		V
non-storage operation	$-V_{g9}$	max. min.	50 25	
Collector voltage	V _{g8}	max. min.	180 120	
Collimator voltage	V _{g7}	max. min.	200	V
First accelerator voltage	$V_{g2'}, V_{g2''}$	max. min.	60 40	
Cathode to heater voltage positive	V _{k'f'} , V _{k''f''}	max.	125	٧
negative	$-V_{k'f'},-V_{k''f''}$	max.	125	V
Control grid voltage	V _{a1′} , V _{a1′′}	max.	0	V
positive			200	
negative	$-V_{g1'}, -V_{g1''}$	max.	200	V

NOTES

These values are valid at cut-off of both viewing (flood) guns and the writing gun. The H.T. unit
must be capable of supplying 0,5 mA. To protect the tube against excessive surge current during
erasure, an adequately dimensioned RC-network must be connected in series with the screen
terminal lead (Fig. 8).

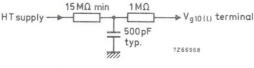


Fig. 8.

- This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
- The collimator electrode voltage should be adjusted for optimum uniformity of background illumination.
- 4. The voltage $V_{q2'}$, $V_{q2''}$ should be equal to the mean x-plate potential.
- 5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_b = 5 \mu A$ per system (measured against x-plates).
- 6. The writing speed is defined as the maximum speed at which a written trace is just visible, starting from a background which is just black. The indicated value is guaranteed for the total graticule area, with the exception of maximum 5% in each corner. The writing speed can be increased to approx. 1,25 div/µs if some background is tolerated.
- 7. The storage time is defined as the time required for the brightness of the unwritten background to rise from just zero brightness (viewing-beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.
- 8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 9. A graticule, consisting of concentric rectangles of 88 mm x 70 mm and 84,8 mm x 67,6 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

CORRECTION COILS

General

The L14-131GH/55 is provided with a coil unit (see Fig. 9) consisting of:

- A pair of coils L3 and L4 which enable the angle between the x and y-traces at the centre of the screen to be made exactly 90° (orthogonality correction).
- A pair of coils L1 and L2 for image rotation which enable the alignment of the x-trace with the x-lines of the graticule.

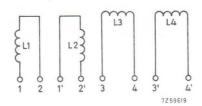


Fig. 9 Diagram of coil unit.

Orthogonality (coils L3 and L4)

The current required under typical operating conditions without a mu-metal shield being used is max. 20 mA for complete correction of orthogonality. It will be 30% to 50% lower with shield, depending on the shield diameter. The resistance of the coil is approx. 225 Ω .

Image rotation (coils L1 and L2)

The image rotation coils are wound concentrically around to the tube neck. Under typical operating conditions 22 ampere-turns are required for maximum rotation of 5°. Both coils have 850 turns. This means that a current of max. 12,5 mA per coil is required which can be obtained by using a 12 V supply when the coils are connected in series or a 6 V supply when they are in parallel.

Connecting the coils

The coils have been connected to 8 solder tags according to Fig. 10.

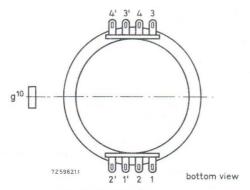


Fig. 10 Bottom view.

With L3 and L4 connected in series according to Fig. 11 a current in the direction indicated will produce a clockwise rotation of the vertical trace and an anti-clockwise rotation of the horizontal trace.

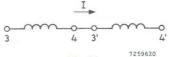


Fig. 11.

BEAM CENTRING MAGNET

Inherent to the split-beam system a slight difference between the two beam currents can occur after splitting, resulting in different intensities of the two traces. In order to equalize the beam currents, a beam centring magnet should be mounted near the base of the gun and adjusted for the required field direction and field strength.

OPERATING NOTES

Modes of operation

Store mode

a. Dynamic erasure (variable persistence).

Dynamic erasure can be achieved by applying erasing pulses of positive polarity to the backing electrode. The pulse amplitude required is approximately 9 V (< 15 V) and the persistence of a stored display can be controlled by varying the duty factor of these pulses.

b. Static erasure.

If no dynamic erasing pulses are applied, the storage time is limited by the potential shift of the storage layer due to landing of positive ions. In order to erase a stored display, the backing electrode should first be connected to the collector electrode voltage and then returned to its original potential for about 100 ms; after that, an erasing pulse of positive polarity and a duration of not less than 300 ms should be applied. For the adjustment of the amplitude of this pulse see Procedure of adjustment.

Non-store mode

For non-store operation, it is sufficient to make the backing electrode about 35 V negative with respect to the viewing gun cathodes. The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Procedure of adjustment

- a. Adjust the cathode current of each viewing gun to 0,4 mA by means of its control grid voltage.
- b. Adjustment of the erasing pulse amplitude (static erasure)

The pulse amplitude should be just sufficient to suppress any background illumination at the centre of the display area (this adjustment should be done under low ambient light conditions). Data on storage time and maximum writing speed are based on erasure to "just black". A larger pulse amplitude (erasure to "blacker than black") yields a longer storage time at the expense of maximum writing speed. On the other hand, writing speed can be increased if some background illumination is tolerated. To erase to "just black" the amplitude of this pulse is approximately 9 V.

c. Adjustment of the collimator voltage.

With dynamic erasing pulses applied and a persistence control setting that yields a convenient background illumination intensity, the collimator voltage is adjusted for optimum background uniformity. This voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage will be approximately 80 V with respect to the viewing gun cathode potential. If this voltage is too high or too low, there is a decrease of intensity at the four corners or at the centres of the vertical edges of the display area respectively.

INSTRUMENT CATHODE-RAY TUBE

14 cm diagonal, rectangular flat-faced direct-view charge transfer storage tube with internal graticule. The tube has vertical scan-magnification with 3 quadrupole lenses and is for wide-band (100 MHz) oscilloscopy with fast store mode and variable persistence.

QUICK REFERENCE DATA

Final accelerator voltage	V _{g13} (ℓ)	10	kV
Minimum useful scan area	9.0	90 mm x 72	mm
Deflection coefficient horizontal vertical	M _X M _V		V/div V/div
Writing speed		1	div/ns

OPTICAL DATA

Screen

type persistence, non-store mode persistence, store mode	GH, colour green medium-short variable
Useful screen area	min.90 mm x 72 mm
Useful scan area	min.90 mm x 72 mm
Spot eccentricity in horizontal direction in vertical direction	max. 6 mm max. 8 mm
Internal graticule	type 95; see Fig. 6
HEATING	

HEATING

Writing section

Indirect by a.c. or d.c.*

Heater voltage Heater current

Heating time to attain 10% of the cathode current at equilibrium conditions

Viewing section

Indirect by d.c.*

Heater voltage Heater current

Heating time to attain 10% of the cathode current at equilibrium conditions

* Not to be connected in series with other tubes.

metal backed phosphor

Vf

VEGf

IFGf.

6,3 V 240 mA

12.6 V

approx. 5 s

approx. 5 s

MECHANICAL DATA

Mounting position

The tube can be mounted in any position. It should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress. Avoid any force on the side contacts.

N	et	mass	

approx.

1,3 kg

Base

14 pin, all glass

Dimensions and connections (see also outline drawing)

Overall length (socket included)

max.

454 mm

Faceplate dimensions

118 ± 0,5 mm x 98 ± 0,5 mm

Accessories

Socket (supplied with tube)

type

55572

Side contact connector (8 required) Small ball contact connected (6 required) type type 55561 4022 102 21590

FOCUSING

electrostatic

note 1

DEFLECTION

double electrostatic

x-plates v-plates

symmetrical symmetrical

Angle between x and v-traces

90 ± 10

Angle between y-trace and y-axis of

the internal graticule

≤ 5° note 2

NOTES

- 1. Because of the use of a quadrupole lens for the magnification of the vertical deflection, two more quadrupole lenses are used for focusing. Therefore, controls for two voltages have to be provided.
- 2. The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the y-trace with the mechanical y-axis of the screen. The coil has 2000 turns and a maximum resistance of 650 Ω . Under typical operating conditions, a maximum of 30 ampere-turns is required for the maximum rotation of 50. This means the required supply is 15 mA maximum at 12 V maximum.

CAPACITANCES

x ₁ to all other elements except x ₂	C _{x1(x2)} 5	5,5	pF
x_2 to all other elements except x_1	C _{x2(x1)} 5	5,5	pF
y ₁ to all other elements except y ₂	$C_{y1(y2)}$	2,7	pF
y ₂ to all other elements except y ₁	$C_{y2(y1)}$ 2	2,7	pF
x ₁ to x ₂	C_{x1x2}	3	pF
y ₁ to y ₂	C_{y1y2}	1,7	pF
g ₁ to all other elements	C_{g1}	7	pF
k to all other elements	C_k	5	pF
g ₁₁ to all other elements	C _{g11}	80	pF
g ₁₂ to all other elements	C _{g12}	70	pF
g ₁₃ to all other elements	C _{g13}	85	pF
g ₃ to all other elements	C _{g3}	17	pF
g5 to all other elements	C _{g5}	17	pF
gg ₋₁ to all other elements	C _g 9-1	30	pF
gg ₋₂ to all other elements	C _g 9-2	70	pF
gg-3 to all other elements	C _g 9-3	60	pF
FGA to all other elements	CFGA	20	pF
k', k" to all other elements	Ck', k"	12	pF

DIMENSIONS AND CONNECTIONS

Dimensions in mm

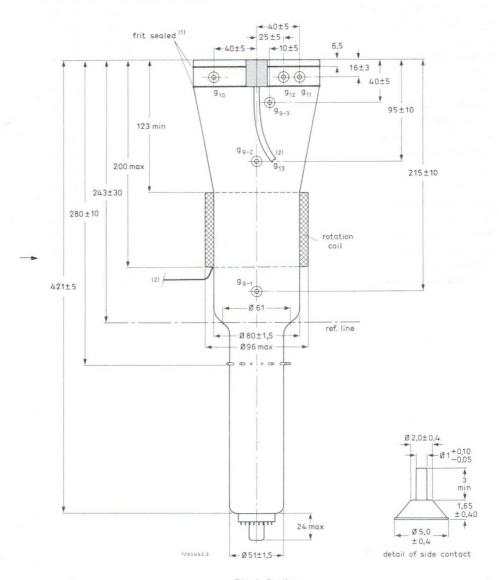


Fig. 1 Outlines

- (1) Dimensions of faceplate only. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm.
- (2) Minimum length of cable: 350 mm.

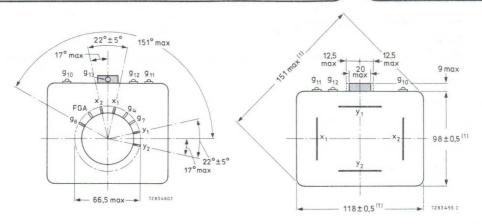


Fig. 2 Bottom view and side-contact arrangement.

Fig. 3 Top view. For note (1) see opposite page.

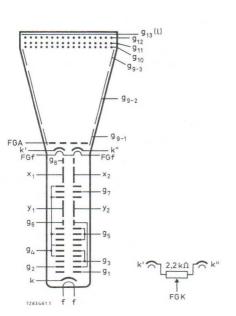


Fig. 4 Electrode configuration.

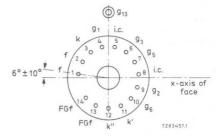


Fig. 5 Pin arrangement; bottom view.

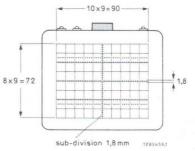


Fig. 6 Internal graticule colour of graticule: brown-black; line width : 0,2 mm;

dot diameter

: 0,4 mm.

TYPICAL OPERATION (for notes see next pages)

Conditions

Writing section (voltages with respect to writing gun cathode k, unless otherwise stated for optimum scan magnification ≈ 1.8)

magnification ≈ 1.8).				
Final accelerator voltage	V _{g13(I)}	10 000	\vee	note 1
Geometry control voltage	V _{g8}	3000 ± 100	V	
Scan magnifier electrode voltage (with respect to g ₂)	V _{g7}	-600	V	
Horizontal alignment electrode voltage (with respect to g ₂)	V_{g6}	± 100	V	note 2
Vertical focusing electrode voltage (with respect to g ₂)	V_{g5}	-860 to -1100	V	
Correction electrode voltage (with respect to g ₂)	V_{g4}	200	V	note 3
Horizontal focusing electrode voltage (with respect to g ₂)	V_{g3}	-1300 to -1650	V	
First accelerator voltage	V_{g2}	3000	\vee	
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	75 to 130	V	

Viewing section (voltages with respect to viewing gun cathode FGK, Fig. 4)

viewing section (voitages with respect to viewi	ng gun catriou	e run, rig	J. 4)		
		non- store mode	variable persist- ance mode	fast- store mode	
Final accelerator voltage (with respect to first accelerator FGA)	V _{g13(I)}	7000 V	7000 V	7000 V	note 1
Backing electrode voltages (d.c.) front mesh fast mesh	V _{g12} V _{g11}	−50 V 140 V	140 V	140 V	= ==
Collector mesh voltage (d.c.)	V_{g10}	130 V	130 V	130 V	
Collimator voltage (d.c.) C3 C2 C1	V _g 9-3 V _g 9-2 V _g 9-1	65 V ≈ 65 V 30 V	65 V 65 V 30 V	65 V 65 V 30 V	note 4
First accelerator voltage (d.c.)	VFGA	20 V	20 V	20 V	
Flood gun cathode voltage (d.c.)	VFGK	0 V	0 V	0 V	J

The first accelerator voltage should be equal to the mean x-plate potential.

Performance

Useful scan area min. 90 mm x 72 mm

Deflection coefficient horizontal Mx typ. 18,5 V/div max. 20,5 V/div

vertical $\begin{array}{ccc} & \text{typ.} & \text{4,8 V/div} \\ \text{M}_{\text{y}} & \text{max.} & \text{5,5 V/div} \end{array}$

Deviation of deflection linearity

Geometry distortion

Grid drive for 10 µA beam current

Grid drive for specified writing speed

Line width at the centre of the screen

max. 2 % note 5 see note 6

V_d approx. 20 V

V_d max. 80 V l.w. 0.4 mm note 7

Writing speed (note 8)

Variable persistence mode

just black: $\geq 250 \text{ div/ms}$ max. write: $\geq 2.5 \text{ div/}\mu\text{s}$

Fast-store mode

max. write: ≥ 1 div/ns

Storage viewing time (note 9)

Variable persistence mode

just black: \geq 60 s max. write: \geq 15 s

Fast-store mode

max. write: ≥ 15 s

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying 0,5 mA. To protect the tube against excessive surge current during erasure, an RC-network as shown in Fig. 7 must be connected in series with the screen terminal lead; the resistance of 15 to 20 $M\Omega$ includes the internal resistance of the H.T. supply.

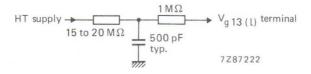


Fig. 7.

- This voltage should be adjusted for equal brightness in the x-direction with respect to the electrical centre of the tube.
- 3. For minimum defocusing of vertical lines near the upper and lower edges of the scanned area this voltage should be the value indicated.
- 4. The indicated values concern the d.c. levels; during the erasing, preparing and transfering operation these electrodes are pulsed.
- 5. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- A graticule, consisting of concentric rectangles of 90 mm x 72 mm and 87,8 mm x 70,5 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.
- 7. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_b = 10~\mu A$ (measured against x-plates).

NOTES (continued)

- 8. The writing speed is defined as the maximum speed at which a written trace is just visible starting from a background which is just black. The indicated value is guaranteed for the central 80% of the minimum screen area, except the outmost 3 mm of the screen. However, in any corner not more than 4 square divisions fall outside the guaranteed area. The writing speed can be increased, if some background is tolerated. Within the same area, a trace, written with the indicated value of max. write, remains just visible within the indicated storage time of max. write.
 - The writing speed in max. write, with background, is defined as the maximum speed at which the written trace remains just visible within the indicated storage time.
- 9. The storage time in just black mode is defined as the time required for the brightness of the unwritten background to rise from zero brightness (viewing beam cut-off) to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased. The storage time in max, write and fast is related to the writing speed.

LIMITING VALUES (absolute maximum rating system)

Writing section (Voltages with respect to writing gun cathode k, unless otherwise stated)

Final accelerator voltage	V _{g13(I)}	max. min.	10500 8500	
Geometry control voltage (with respect to g ₂)	V_{g8}	max. min.	500 -500	
Scan magnifier electrode voltage (with respect to g ₂)	V_{g7}	max. min.	550 -700	
Horizontal alignment electrode voltage (with respect to g ₂)	V_{g6}	max. min.	500 -500	
Vertical focusing electrode voltage (with respect to g ₂)	V_{g5}	max. min.	-750 -1200	
Correction electrode voltage (with respect to g ₂)	V_{g4}	max. min.	500	V
Horizontal focusing electrode voltage (with respect to g ₂)	V_{g3}	max. min.	-1200 -1800	
First accelerator voltage	V_{g2}	max. min.	3500 2500	
Control grid voltage positive negative	∨ _{g1} −∨ _{g1}	max.	0 200	V
Cathode to heater voltage positive negative	V _{kf}	max.	125 125	
Voltage between correction electrode and any deflection plate	V _{g4/x} V _{g4/y}	max.	500 500	
Grid drive, averaged over 1 ms	V _d	max.	30	٧
Viewing section (voltages with respect to viewing gun cat	hode FGK)			
Screen voltage	V _{g13(I)}	max. min.	7500 5500	
Backing electrode voltage (d.c.) front mesh	V_{g12}	max. min.	600 -50	V
fast mesh	V_{g11}	max. min.	200 -50	
Collector mesh voltage (d.c./a.c.)	V_{g10}	max. min.	200 100	
Collimator voltages (d.c./a.c.)	V _g 9-1; 9-2; 9-3	max. min.	150 0	V
First accelerator voltage	V _{FGA}	max. min.	100 0	V
Cathode to heater voltage	V _k 'FGf, V _k "FGf -V _k 'FGf, -V _k "FGf	max.	125 125	

OPERATING NOTES

Scan magnifier

A scan magnification $\rm M_{SC}\approx 1.8$ is the best compromise between line width and sensitivity. This is obtained with V $_{g7}=-600$ V and V $_{g4}=200$ V. Performance is tested and specified under this condition and no adjustment will be necessary for individual tubes.

Focusing is separate for horizontal and vertical directions with V_{g3} and V_{g5} respectively. Both focus settings may depend on beam current with different steepness. Although both electrodes are positive with respect to cathode, reverse current may result from secondary electrons leaving grid 3 (max. 5 μ A) and grid 5 (max. 50 μ A).

Normal current direction from beam interception is to be expected on the horizontal correction electrode g_6 (up to 500 μ A) and, as usual, on g_2 and deflection plates.

Modes of operations

Non-store mode

For non-store operation the front mesh V_{q12} is set to -50~V with respect to FGK.

The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused. Care should be taken, especially when switching from store mode to non-store mode, that excessive writing beam current is avoided, as otherwise the storage layer may be damaged.

Variable persistence mode

The fast mesh is switched off for this operation and used as collector by setting $V_{q11} = 140 \text{ V}$.

a. Static erasure

If no dynamic erasing pulses are applied the storage time is limited by the potential shift of the storage layer due to landing of positive ions.

In order to erase a stored display, V_{g12} is increased to 500 V for 100 ms and than returned to its original potential for about 500 ms; after that, an erasing pulse of positive polarity (max. 20 V) and a duration of 600 ms should be applied.

While the erasing pulse amplitude is to be adjusted with zero d.c. level for "just black", the background illumination can be changed — even with a stored signal — by varying the d.c. level for optimum contrast or maximum writing speed.

Background egality can be optimized by balancing the viewing gun cathodes by means of a potentiometer of 2,2 k Ω , proper collimator adjustment, and by increasing VFGA. Vg9-1 and Vg9-3 in positive direction during erasure.

Before first installation, depending on transport conditions, demagnetization of the tube face region may be necessary.

b. Dynamic erasure

Dynamic erasure can be achieved by applying extra erasing pulses of positive polarity to the backing electrode of the front mesh (g_{12}) . The amplitude of these extra pulses is equal to that of the original erasing pulse, the frequency is 120 Hz and the persistence of the display can be controlled by varying the duty factor.

Fast-store mode

For erasure in the fast mode the front mesh has to be erased first in the same way as in the variable persistence mode but separate adjustments should be foreseen.

The fast mesh is to be prepared by reducing V_{g11} from 140 V to the stabilizing level (0 to max. 20 V) during the erasing pulse on the front mesh.

After writing, at the end of the unblanking pulse, a transfer pulse (500 V, 100 ms) is to be applied on the front mesh.

During the transfer pulse, V_{g11} is further reduced about 1 V for enhanced transmission during transfer. This reduction has to be carefully adjusted for optimum contrast and writing speed.

During the whole cycle, FGA, V_g9-1 and V_g9-3 may be increased for more viewing gun current. Details on the adjustment procedure and the voltage range to be provided for can be made available.

INSTRUMENT CATHODE-RAY TUBE

- 14 cm diagonal rectangular flat face
- direct view storage tube
- internal graticule
- for oscilloscope applications

QUICK REFERENCE DATA

Final accelerator voltage	V _{q10} (ℓ)	8,5 kV
Minimum useful scan area	90 mr	m x 72 mm
Deflection coefficient horizontal vertical	M _× M _y	9,5 V/div 4,1 V/div
Writing speed		$2,5 \text{ div}/\mu s$

OPTICAL DATA

Screen type persistence, non-store mode persistence, store mode	metal-backed phosphor GH, colour green medium-short variable		
Useful screen area	min. 90 mm x 72 mm		
Useful scan area	min. 90 mm x 72 mm		
Spot eccentricity in horizontal and vertical directions	max. 6 mm		
Internal graticule	typ. 95; see Fig. 6		

HEATING

Writing section

Indirect by a.c. or d.c.*		
Heater voltage	V_{f}	6,3 V
Heater current	If	240 mA
Heating time to attain 10% of the cathode		

Viewing section Indirect by d.c.*

Heater voltage	VFGf	12,6 V
Heater current	I _{FGf}	240 mA
Heating time to attain 10% of the cathode		

current at equilibrium conditions approx. 5 s

current at equilibrium conditions

approx. 5 s

^{*} Not to be connected in series with other tubes.

MECHANICAL DATA

Dimensions and connections (see also outline drawings)

Overall length (socket included)

≤ 452 mm

Faceplate dimensions (final accelerator contact excluded)

 $118 \pm 0.5 \text{ mm x } 98 \pm 0.5 \text{ mm}$

Net mass

Mase 14 pin, all glass

approx. 1,3 kg

Mounting position

The tube can be mounted in any position. It should not be supported by the base alone or near the base region, and under no circumstances should the socket be allowed to support the tube. The tags near the screen should not be subjected to mechanical stress. Avoid any force on the side contacts.

Accessories

Socket (supplied with tube)

type 55566 type 55561

Side contact connector (7 required)

Small ball contact connector (5 required)

type 4022 102 21590

FOCUSING

electrostatic

DEFLECTION

double electrostatic

x-plates

symmetrical

y-plates

symmetrical

Angle between x and y-traces

90 ± 1°

Angle between x-trace and x-axis of the internal graticule

≤ 50*

^{*} The tube has a rotation coil, concentrically wound around the tube neck, to allow alignment of the x-trace with the mechanical x-axis of the screen. The coil has 2000 turns and a maximum resistance of 650 Ω . Under typical operating conditions, a maximum of 20 ampere-turns is required for the maximum rotation of 5°. This means the required supply is 10 mA maximum at 8 V maximum.

FGK" to all other elements

CAPACITANCES

x ₁ to all other elements except x ₂	$C_{\times 1}(\times 2)$	5,5 pF
x2 to all other elements except x1	C _{x2(x1)}	5,5 pF
y ₁ to all other elements except y ₂	C _{y1(y2)}	3,5 pF
y ₂ to all other elements except y ₁	Cy2(y1)	3,5 pF
x ₁ to x ₂	C _{x1x2}	2,5 pF
y ₁ to y ₂	Cy1y2	2 pF
g ₁ to all other elements	C _{g1}	6 pF
k to all other elements	Ck	3,5 pF
g ₃ to all other elements	C _{g3}	4,5 pF
g ₇₋₁ to all other elements	C _{g7-1}	30 pF
g ₇₋₂ to all other elements	C _{g7-2}	65 pF
g ₇₋₃ to all other elements	C _{g7-3}	60 pF
gg to all other elements	C_{g9}	60 pF
g ₁₀ to all other elements	C _{g10}	80 pF
FGA to all other elements	CFGA	15 pF
FGK' to all other elements	CFGK'	8 pF

CFGK" 8 pF

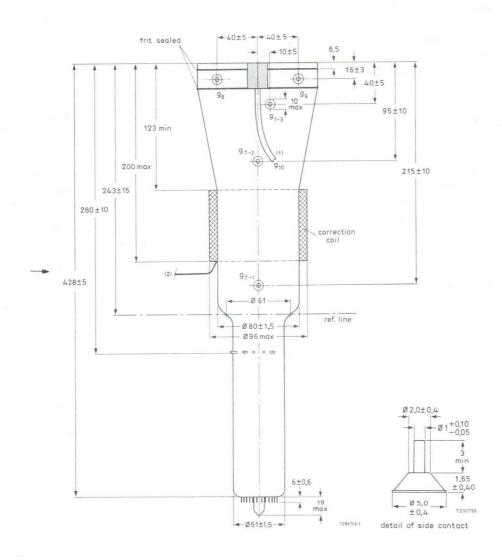


Fig. 1 Outlines.

- (1) Minimum cable length is 420 mm.
- (2) Minimum length of connecting leads is 350 mm.
- (3) Dimensions of faceplate only. The bulge at the frit seal may increase the indicated maximum dimensions by not more than 3 mm.

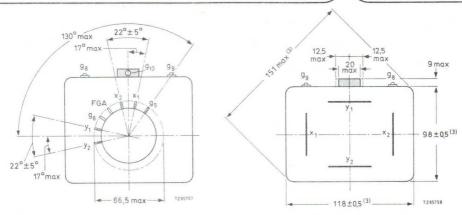


Fig. 2 Bottom view and side-contact arrangement.

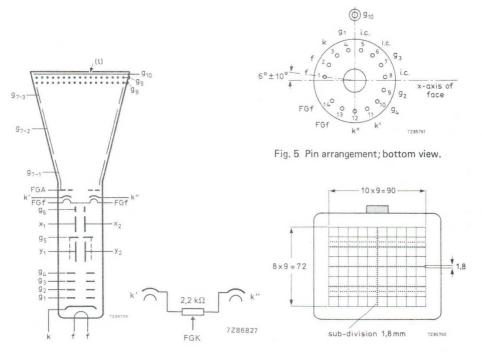
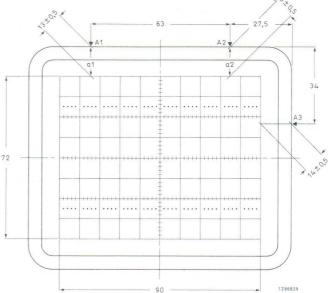


Fig. 4 Electrode configuration.

Fig. 6 Internal graticule colour of graticule: black; line width: 0,2 mm; dot diameter: 0,4 mm.


INTERNAL GRATICULE ALIGNMENT

The internal graticule is aligned with the faceplate by using the faceplate reference points A1, A2 and A3,

see Fig. 7.

Fig. 7 Front view of tube with internal graticule.

 $|a1 - a2| \le 0.3 \text{ mm}.$

TYPICAL OPERATION (for notes see last page but one).

Conditions

Writing section (voltages with respect to writing gun cathode k)

Final accelerator voltage	Vg10(2)	8500 V	note 1
Geometry control electrode voltage	V _g 6	1500 ± 100 V	
Deflection plate shield voltage	V_{g5}	1500 V	note 2
Astigmatism control electrode voltage	V_{g4}	1500 ± 50 V	note 3
Focusing electrode voltage	V_{g3}	400 to 600 V	
First accelerator voltage	V_{g2}	1500 V	
Cut-off voltage for visual extinction of focused spot	-V _{g1}	45 to 85 V	

 ${\it Viewing section} \ ({\it voltages} \ {\it with} \ {\it respect} \ to \ {\it viewing gun cathode FGK, Fig. 8})$

See Fig. 9.

Note: The d.c. voltage on the first accelerator of the flood guns (FGA) should be equal to the mean x-plate potential.

Fig. 8.

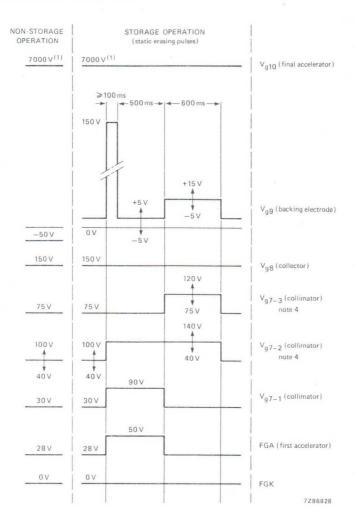


Fig. 9 Diagram of non-storage and storage operation.

Performance

at FGA = 50 V

Useful scan horizontal		min.		mm
vertical		min.	72	mm
Deflection coefficient horizontal	M_{X}	max.		V/div V/div
vertical	M_{y}	max.		V/div V/div
Line width at the centre of the screen	I.w.		0,35	mm note 5
Writing speed in storage operation just black max. write		<i>≥</i>		div/ms) note 6
Storage viewing time just black max. write		<i>≥</i>	90 15	note /
Deviation of deflection linearity		max.	2	% note 8
Geometry distortion		see not	te 9	
Grid drive for 10 μA beam current	V_d	approx	. 25	V
Grid drive for specified writing speed	V_d	max.	45	V
Total cathode current of both viewing guns at FGA = 28 V		approx	c. 1	mA

approx. 2 mA

LIMITING VALUES (Absolute maximum rating system)

Writing section (voltages with respect to writing gun cathode k)

Geometry control electrode voltage Deflection plate shield voltage Astigmatism control electrode voltage Focusing electrode voltage Focusing electrode voltage Vg3 First accelerator voltage Control grid voltage positive negative Cathode to heater voltage yold Voltage between astigmatism control electrode and any deflection plate Vg4/x Vg4/x Vg4/y Grid drive, averaged over 1 ms Screen dissipation Viewing section (voltages with respect to viewing gun cathode FGK) Final accelerator voltage storage operation Vg9 Colliector voltage Vg7-1, Vg7-2, Vg7-3 First accelerator voltage VeGA Cathode to heater voltage Vg7-1, Vg7-2, Vg7-3 First accelerator voltage VeGA Cathode to heater voltage VerGA Cathode to heater voltage Vg6-1, Vk'FGf, Vk''FGf				
Deflection plate shield voltage Deflection plate shield voltage Astigmatism control electrode voltage Focusing electrode voltage First accelerator voltage Control grid voltage positive negative Cathode to heater voltage yg4/x Vg4/x Vg4/x Vg4/y Grid drive, averaged over 1 ms Screen dissipation Viewing section (voltages with respect to viewing gun cathode FGK) Final accelerator voltage storage operation Collector voltage Vg6 Vg1 PVg1 PVg1 PVg1 PVg1 PVg1 PVg1 PVg1 PVg1 PVg4/x PVg4/x PVg4/x PVg4/x PVg4/y PVg4/y PVg4/y PVg4/y PVg4/y PVg9 PVg9 Collector voltage Vg9 Collimator voltage Vg9 Collimator voltage Vg7-1, Vg7-2, Vg7-3 PVGA Cathode to heater voltage positive Vk'FGf, Vk''FGf	max.	9000		
Deflection plate shield voltage V_{g5} V_{g4} V_{g4} V_{g3} V_{g3} V_{g3} V_{g3} V_{g3} V_{g3} V_{g3} V_{g3} V_{g3} V_{g2} V_{g3} V_{g2} V_{g3} V_{g3} V_{g4} V_{g4} V_{g4} V_{g5} V_{g5} V_{g1} V_{g5} V_{g1} V_{g2} V_{g1} V_{g2} V_{g1} V_{g2} V_{g1} V_{g2} V_{g1} V_{g2} V_{g2} V_{g3} V_{g4} V_{g5} V_{g5	max.	2100		
Astigmatism control electrode voltage V_{g4} V_{g3} V_{g3} V_{g2} V_{g3} V_{g2} V_{g2} V_{g3} V_{g2} V_{g2} V_{g3} V_{g2} V_{g3} V_{g4}	max.	2000	V	
First accelerator voltage Control grid voltage positive negative Cathode to heater voltage positive negative Vkf negative Vkf negative Vkf negative Vkf negative Voltage between astigmatism control electrode and any deflection plate Vg4/x Vg4/y Grid drive, averaged over 1 ms Vcewing section (voltages with respect to viewing gun cathode FGK) Final accelerator voltage Vg910(\hat{\mathcal{Q}}) Reaching electrode voltage storage operation Vg9 Collector voltage Vg7-1, Vg7-2, Vg7-3 First accelerator voltage Vk'FGf, Vk''FGf	max. min.	2100 1200		
Control grid voltage positive negative Cathode to heater voltage positive negative Cathode to heater voltage positive negative Vkf negative Vkf negative Voltage between astigmatism control electrode and any deflection plate Vg4/x Vg4/y Grid drive, averaged over 1 ms Screen dissipation Viewing section (voltages with respect to viewing gun cathode FGK) Final accelerator voltage Backing electrode voltage storage operation Vg9 Collector voltage Vg7-1, Vg7-2, Vg7-3 First accelerator voltage Vk'FGf, Vk''FGf	max.	1000	V	
positive negative V_{g1} negative $V_{g4/x}$ negative $V_{g4/y}$ negative $V_$	max. min.	2000 1250		
positive negative V_{kf} negative V_{kf} V	max. max.	0 200	V V	
and any deflection plate $V_{g4/x}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g4/y}$ $V_{g5/y}$ $V_{g5/$	max.	125 125		
Screen dissipation W_{ℓ} V_{ℓ} V	max.	500 500	V	
Viewing section (voltages with respect to viewing gun cathode FGK) Final accelerator voltage $V_{g10}(\ell)$ Backing electrode voltage storage operation V_{g9} non-storage operation $-V_{g9}$ Collector voltage V_{g8} Collimator voltage V_{g7-1} , V_{g7-2} , V_{g7-3} First accelerator voltage V_{FGA} Cathode to heater voltage positive $V_{K'FGf}$, $V_{K''FGf}$	max.	30	V	
Final accelerator voltage $V_{g10}(\ell)$ V_{g9} v_{g9} v_{g9} v_{g9} v_{g9} v_{g9} v_{g9} v_{g9} v_{g8} v_{g8} v_{g8} $v_{g7-1}, v_{g7-2}, v_{g7-3}$ $v_{g7-1}, v_{g7-2}, v_{g7-3}$ v_{g8}	max.	8	mW	/cm ²
Backing electrode voltage storage operation Vg9 Pg9 Pg9 Pg9 Pg9 Pg9 Pg9 Pg9 Pg9 Pg9 P				
storage operation Vg9 non-storage operation -Vg9 non-storage operation -Vg9 non-storage operation vg8 non-storage Vg8 non-storage Vg8 non-storage Vg7-1, Vg7-2, Vg7-3 non-storage vg7-1, Vg7-2, Vg7-3 non-storage vg8 non-stor	max. min.	7500 5500		
ron-storage operation -V _{g9} Collector voltage V _{g8} Collimator voltage V _{g7-1} , V _{g7-2} , V _{g7-3} First accelerator voltage V _{FGA} Cathode to heater voltage v _{k'FGf} , V _{k''FGf}	max. min.	+ 150 -5		
Collector voltage Vg8 Collimator voltage Vg7-1, Vg7-2, Vg7-3 First accelerator voltage VFGA Cathode to heater voltage positive Vk'FGf, Vk''FGf	max. min.	50 25		
First accelerator voltage Vg7-1, Vg7-2, Vg7-3 r VFGA r Cathode to heater voltage positive Vk'FGf, Vk''FGf	max. min.	180 120		
Cathode to heater voltage positive VFGA r Vk'FGf, Vk''FGf	max. min.	200	V	
positive Vk'FGf, Vk''FGf	max. min.	60	V V	
* K FGI * K FGI ·	max. max.	125 125		

NOTES

1. These values are valid at cut-off of both flood guns and the writing gun. The H.T. unit must be capable of supplying 0,5 mA. To protect the tube against excessive surge current during erasure, an RC network as shown in Fig. 10 must be connected in series with the screen terminal lead; the resistance of 15 to 20 M Ω includes the internal resistance of the H.T. supply.

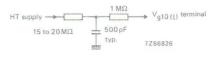


Fig. 10.

- This voltage should be equal to the mean y-plate potential. The mean x and y-plate potentials should be equal for optimum spot quality.
- 3. When putting the tube into operation, the astigmatism control voltage should be adjusted only once for optimum spot size in the screen centre. The control voltage will be within the stated range, provided the conditions of note 2 are adhered to.
- 4. The collimator electrode voltage V_{g7-2} and V_{g7-3} should be adjusted for optimum uniformity of background illumination.
- 5. Measured with the shrinking raster method in the centre of the screen under typical operating conditions, adjusted for optimum spot size at a beam current $I_b = 10~\mu\text{A}$ (measured on x-plates).
- 6. The writing speed is defined as the maximum speed at which a written trace is just visible starting from a background which is just black. The indicated value is guaranteed for the central 75% of the minimum screen area, except the outmost 4 mm of the screen. However, in any corner not more than 4 square divisions fall outside the guaranteed area. The writing speed can be increased, if some background is tolerated. Within the same area, a trace, written with the indicated value of max. write, remains just visible within the indicated storage time of max. write.
 - The writing speed in max. write, with background, is defined as the maximum speed at which the written trace remains just visible within the indicated storage time.
- 7. The storage time in just black mode is defined as the time required for the brightness of the unwritten background to rise from zero brightness to 10% of saturated brightness. At reduced intensity (by pulsing the flood beams) the storage time can be increased.

The storage time in max. write is related to the writing speed.

- 8. The sensitivity at a deflection less than 75% of the useful scan will not differ from the sensitivity at a deflection of 25% of the useful scan by more than the indicated value.
- 9. A graticule, consisting of concentric rectangles of 72 mm x 54 mm and 69,8 mm x 52,5 mm is aligned with the electrical x-axis of the tube. With optimum corrections applied, a raster will fall between these rectangles.

OPERATING NOTES

Modes of operations

Non-storage mode

For non-storage operation the front mesh $V_{\alpha 9}$ is set to -50 V with respect to FGK.

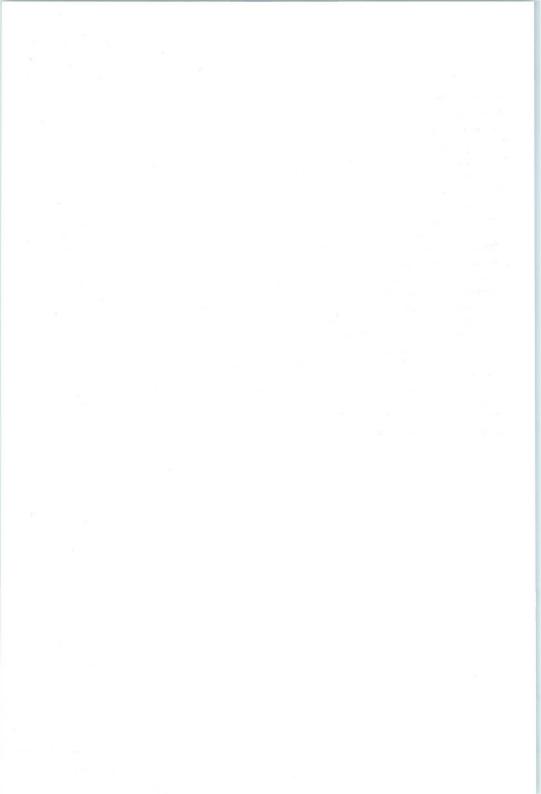
The viewing guns should not be switched off in this mode of operation since slight variations in raster geometry and deflection sensitivity might otherwise be caused.

Variable persistence mode

a. Dynamic erasure

Dynamic erasure can be achieved by applying extra erasing pulses of positive polarity to the backing electrode V_{gg} . The amplitude of these extra pulses is equal to that of the original erasing pulse, the frequency is 120 Hz and the persistence of the display can be controlled by varying the duty factor.

b. Static erasure (Fig. 9)


If no dynamic erasing pulses are applied the storage time is limited by the potential shift of the storage layer due to landing of positive ions.

In order to erase a stored display, V_{g9} is increased to 150 V for 100 ms and than returned to its original potential for about 500 ms; after that, an erasing pulse of positive polarity (max. 15 V) and a duration of 600 ms should be applied.

While the erasing pulse amplitude is to be adjusted with zero d.c. level for "just black", the background illumination can be changed — even with a stored signal — by varying the d.c. level for optimum contrast or maximum writing speed.

Back ground egality can be optimized by balancing the viewing gun cathodes by means of a potentiometer of 2,2 k Ω , proper collimator adjustment, and by increasing V_{FGA}. V_{g7-1}, V_{g7-2} and V_{g7-3} in positive direction during erasure.

Before first installation, depending on transport conditions, demagnetization of the tube face region may be necessary.

MONITOR AND DISPLAY TUBES

SURVEY OF MONITOR AND DISPLAY TUBES

PREFERRED TYPES:

recommended for new design.

M17-142WE

M17-143WE

M17-144WE

M17-145WE

M38-200

MAINTENANCE TYPES: no longer recommended for equipment production.

M24-100W

M24-101W

M31-130W

M31-131W

OBSOLESCENT TYPES: available until present stocks are exhausted.

M17-140W

M17-141W

M38-120W

M38-121W

SCREENS

Although WA and WE are the standard screens certain applications require screens of a different persistence and/or colour (e.g. GH, GR, GM). Tubes with such screens are supplied to special order.

BONDED FACEPLATES

Tubes with bonded faceplates are supplied to special order.

MONITOR TUBE

17 cm diagonal rectangular flat face monitor tube primarily for use as a viewfinder in television cameras. This tube has been replaced by type M17-142WE, which features a 1,5 W cathode (6,3 V/240 mA) with short warm-up time (quick-heating cathode), and an improved phosphor, type WE.

The data of M17-140W are equivalent to those of type M17-142WE, except for the following.

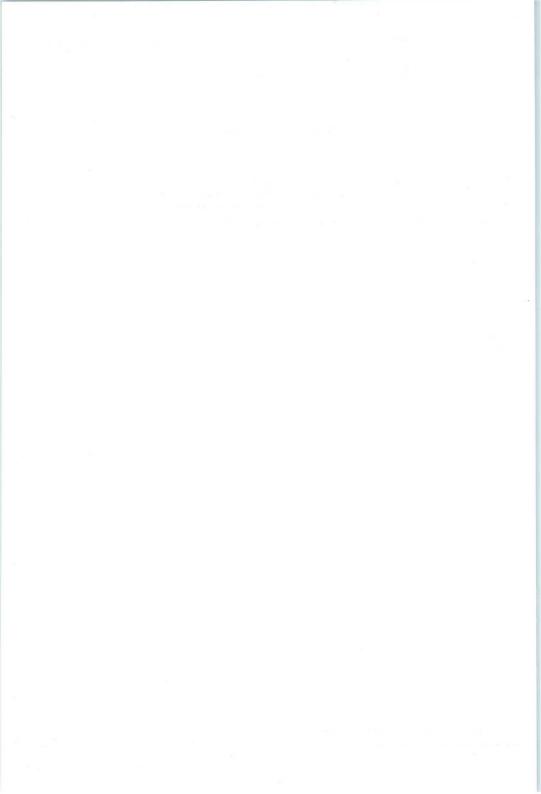
HEATING

Indirect by a.c. or d.c.*

Heater voltage

Heater current

SCREEN


Phosphor type

fluorescent colour

Vf 6,3 V 300 mA

white

^{*} Not to be connected in series with other tubes.

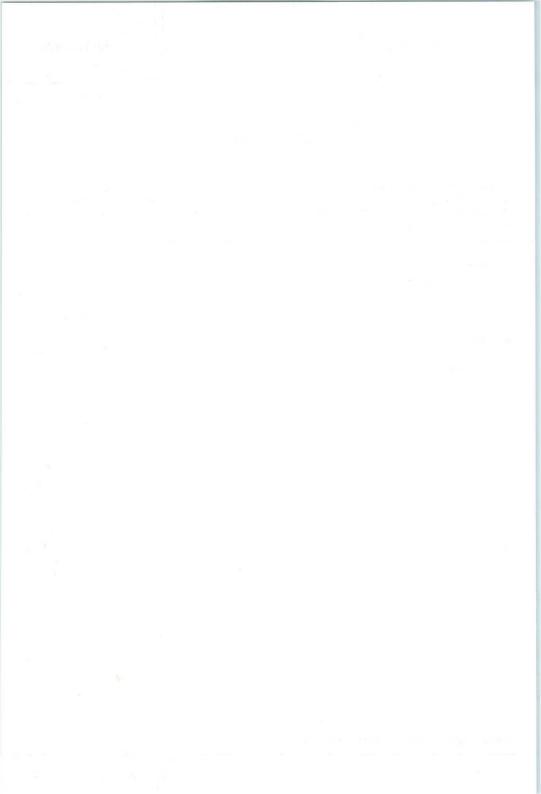
MONITOR TUBE

17 cm diagonal rectangular flat face monitor tube primarily for use as a viewfinder in television cameras. It has a bonded face plate and a metal mounting band. This tube has been replaced by type M17-143WE, which features a 1,5 W cathode (6,3 V/240 mA) with short warm-up time (quick-heating cathode), and an improved phosphor, type WE.

The data of M17-141W are equivalent to those of type M17-143WE, except for the following.

HEATING

Indirect by a.c. or d.c.*


marrect by a.c. or a.c.

Heater voltage Heater current V_f 6,3 V I_f 300 mA

SCREEN

Phosphor type fluorescent colour W white

^{*} Not to be connected in series with other tubes.

MONITOR TUBES

- 17 cm diagonal rectangular flat face
- 700 deflection angle
- high resolution
- quick heating cathode
- M17-142WE: for use in precision monitors and as a viewfinder in television cameras M17-144WE: for use in photographic equipment (see Optical Data)

QUICK REFERENCE DATA

Deflection angle, diagonal 70 °
Face diagonal 17 cm
Neck diameter 28 mm
Overall length max. 234 mm

Screen dimensions

Resolution min. 1050 lines

min. 124 mm x 93 mm

M17-142WE M17-144WE

ELECTRICAL DATA

0		4	
	paci	Tan	CAS

final accelerator to external conductive coating cathode to all other elements

grid 1 to all other elements

Focusing method

Deflection method

Deflection angle, diagonal

Heating

heater voltage

Heating time to attain 10% of the cathode current at equilibrium conditions

C_g3,_g5(l)/m C_k C_{g1}

electrostatic

magnetic*

700

indirect by a.c. or d.c. ** V_f 6,3 V

If 240 mA

approx.

5 s

300 pF

3,6 pF 7 pF

OPTICAL DATA

Screen

Phosphor type fluorescent colour persistence

Useful screen dimensions diagonal horizontal axis vertical axis

Light transmission of screen

metal-backed phosphor

WE Awhite

medium short

min. 155 mm

min. 124 mm min. 93 mm approx. 92%

Note: The M17-144WE has an improved screen blemish specification, to meet the extreme require-

ments of photographic recording equipment.

^{*} To obtain the best tube performance, deflection unit AT1071/07 should be used.

^{**} Not to be connected in series with other tubes.

Other phosphors available to special order.

M17-142WE M17-144WE

MECHANICAL DATA (see also the figures on the next page)

Overall length

Neck diameter

Base

Final accelerator contact

Net mass

227 ± 7 mm

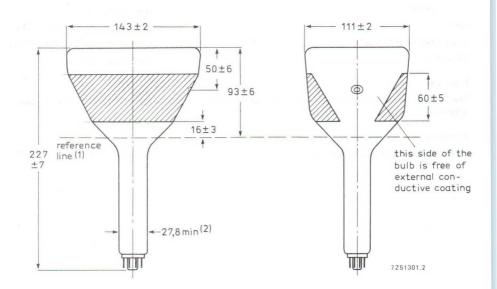
min. 27,8 mm

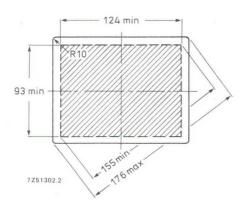
neo eightar, B8H; IEC67-I-31a cavity contact, CT8; IEC67-III-2

approx. 0,7 kg

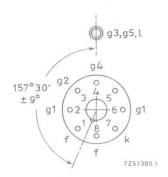
Mounting

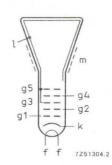
The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone.


Accessories


Final accelerator contact connector

55563A


MECHANICAL DATA


Dimensions in mm

- (1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
- (2) The maximum dimension is determined by the reference line gauge.

Reference line gauge

M17-142WE M17-144WE

RECOMMENDED	OPERATING	CONDITIONS
RECOMMENDED	UPERATING	COMPLICIONS

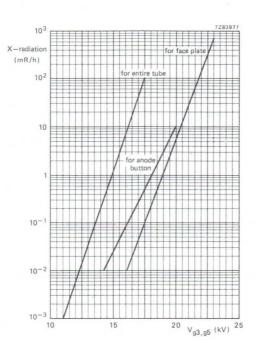
Final accelerator voltage	V _g 3,g5(ℓ)	14	kV
Focusing electrode voltage	V_{g4}	0 to 400	V*
First accelerator voltage	V_{g2}	400	V
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	30 to 62	V

RESOLUTION

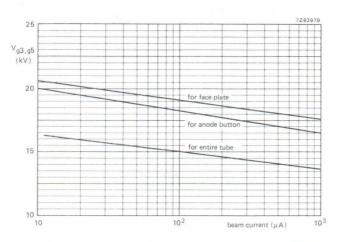
Resolution at screen centre, measured with shrinking raster method (non-interlaced raster), and with beam centring magnet**

at $V_{g3,g5(\ell)} = 14 \text{ kV}$, $V_{g2} = 400 \text{ V}$, $I_{\ell} = 20 \mu\text{A}$, luminance = 400 cd/m^2

min. 1050 lines


LIMITING VALUES					
Final accelerator voltage	$V_{g3,g5}(\ell)$	max. min.		kV kV	
Focusing electrode voltage	V_{g4} $-V_{g4}$	max.	1 0,5	kV kV	
First accelerator voltage	V_{g2}	max. min.	300 300		
Control grid voltage negative positive positive peak	-V _{g1} V _{g1} V _{g1p}	max. max. max.		V V V	
Cathode to heater voltage positive negative	V _{kf}	max.	125 125		

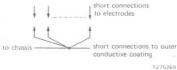
For optimum focus at a beam-current of 50 μ A.


^{**} Catalogue number 3322 142 11401; supplied with directions for use with each tube.

[▲] Luminance is measured with a photocell, of which the spectral response curve is identical to that of the human eye, on a 312-lines raster with dimensions 70 mm x 70 mm.

X-RADIATION LIMIT

X-radiation limit curves, at a constant anode current of 250 $\mu\text{A}\textsc{,}$ measured according to TEPAC103A.


0,5 mR/h isoexposure-rate limit curves, measured according to TEPAC103A.

Product safety

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 14 kV.

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps. The spark gaps must be connected as follows:

/2/526

No other connections between the outer conductive coating and the chassis are permissible.

MONITOR TUBES

- 17 cm diagonal rectangular flat face
- 700 deflection angle
- high resolution
- quick heating cathode
- bonded face plate
- metal band for mounting
- M17-143WE: for use in precision monitors and as a viewfinder in television cameras M17-145WE: for use in photographic equipment (see Optical Data)

QUICK REFERENCE DATA

COTOR THE PETEROL DATA	
Deflection angle, diagonal	70 °
Face diagonal	17 cm
Neck diameter	28 mm
Overall length	max. 240 mm
Screen dimensions	min. 124 mm x 93 mm
Resolution	min. 1050 lines

M17-143WE M17-145WE

ELECTRICAL DATA

Capacitances
final accelerator to metal band
final accelerator to external conductive coating
cathode to all other elements
grid 1 to all other elements

Focusing method Deflection method

Deflection angle, diagonal

Heating

heater voltage heater current

Heating time to attain 10% of the cathode current at equilibrium conditions

OPTICAL DATA

Screen Phosphor type

fluorescent colour persistence

Useful screen dimensions diagonal horizontal axis vertical axis

Light transmission of screen

135 pF $C_{g3,g5}(\ell)/m'$ 240 pF $G_{g3,g5}(\ell)/m$ 3.6 pF Ck

7 pF

 C_{q1} electrostatic

magnetic* 700

indirect by a.c. or d.c. ** 6,3 V Vf 240 mA

If 5 s approx.

metal-backed phosphor

WFA white

medium short

min. 155 min. min. 124 min. min. 93 min.

approx. 88%

Note: The M17-145WE has an improved screen blemish specification, to meet the extreme requirements of photographic recording equipment.

To obtain the best tube performance, deflection unit AT1071/07 should be used.

Not to be connected in series with other tubes.

[▲] Other phosphors available to special order.

232 ± 8 mm

MECHANICAL DATA (see also the figures on the next page)

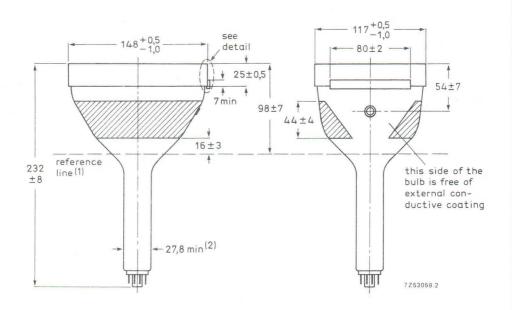
Overall length

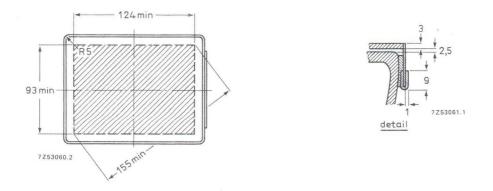
Final accelerator contact connector

Neck diameter min. 27,8 mm

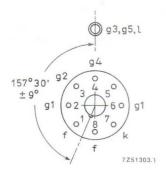
Base neo eightar, B8H; IEC 67-I-31a

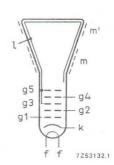
Final accelerator contact cavity contact, CT8; IEC 67-III-2

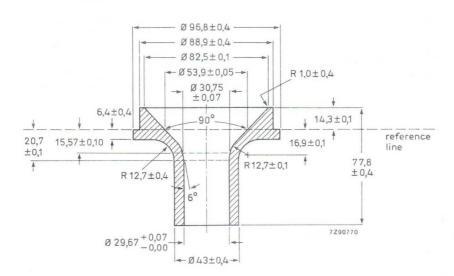

Implosion protection bonded face plate Net mass approx. 1 kg


Mounting

The tube can be mounted in any position. It must not be supported by the socket and not by the base region alone.


Accessories 55563 A MECHANICAL DATA


Dimensions in mm



- (1) Reference line, determined by the plane of the upper edge of the flange of the reference line gauge when the gauge is resting on the cone.
- (2) The maximum dimension is determined by the reference line gauge.

Reference line gauge

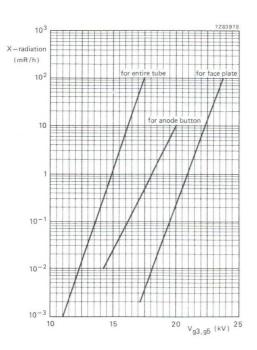
RECOMMENDED	ODEDATING	COMPLITIONS
RECOMMENDED	UPERATING	COMPLLIONS

Final accelerator voltage	Vg3,g5(0)	14	16	kV
Focusing electrode voltage	V_{q4}	0 to 400*	0 to 400	V*
First accelerator voltage	V_{q2}	400	600	V
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	30 to 62	40 to 90	V

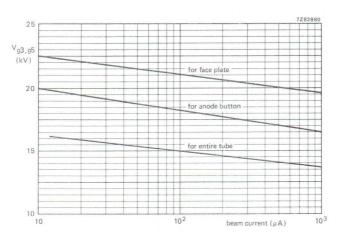
RESOLUTION

Resolution at screen centre, measured with shrinking raster method (non-interlaced raster), and with beam centring magnet **

at
$$V_{g3,g5(\xi)} = 14 \text{ kV}$$
, $V_{g2} = 400 \text{ V}$, $I_{\xi} = 20 \mu \text{A}$, luminance = 400 cd//m^2 at $V_{g3,g5(\xi)} = 16 \text{ kV}$, $V_{g2} = 600 \text{ V}$, $I_{\xi} = 20 \mu \text{A}$, luminance = 500 cd/m^2


$1\chi = 20 \mu\text{A}$, luminance = 400 cd//m ²		min.	1050 lines
at $V_{g3,g5(\ell)}$ = 16 kV, V_{g2} = 600 V, I_{ℓ} = 20 μ A, luminance = 500 cd/m ²		min.	1250 lines
LIMITING VALUES			10.111
Final accelerator voltage	V _{g3,g5} (ℓ)	max. min.	18 kV 12 kV
Focusing electrode voltage	V_{g4} $-V_{g4}$	max.	1 kV 0,5 kV
First accelerator voltage	V_{g2}	max. min.	800 V 300 V
Control grid voltage			
negative	$-V_{q1}$	max.	150 V
positive	$-V_{g1}$ V_{g1}	max.	0 V
positive peak	V_{g1p}	max.	2 V
Cathode to heater voltage			
positive	V_{kf}	max.	125 V
negative	$-V_{kf}$	max.	125 V

For optimum focus at a beam current of 50 μ A.

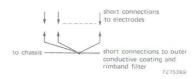

^{**} Catalogue number 3322 142 11401; supplied with directions for use with each tube.

[▲] Luminance is measured with a photocell, of which the spectral response curve is identical to that of the human eye, on a 312-lines raster with dimensions 70 mm x 70 mm.

X-RADIATION LIMIT

X-radiation limit curves, at a constant anode current of 250 $\mu\text{A},$ measured according to TEPAC103A.

0,5 mR/h isoexposure-rate limit curves, measured according to TEPAC103A.


Product safety

X-ray shielding of the cone is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 14 kV.

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.

The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.

MONITOR TUBE

The M24-100W is a 24 cm-diagonal rectangular television tube with metal-backed screen primarily intended for use as a monitor or display tube.

QUICK REFERENCE DATA					
Deflection angle			90 0)	
Focusing		electr	electrostatic		
Resolution			900	lines	
Overall length		max.	260	mm	
SCREEN					
Metal-backed phosphor					
Luminescence			whit	e	
Light transmission of face glass			52	%	
Useful diagonal		min.	225	mm	
Useful width		min.	190	mm	
Useful height		min.	140	mm	
HEATING					
Indirect by a.c. or d.c.; parallel supply					
Heater voltage	v_f		6,3	V	
Heater current	$I_{ extsf{f}}$		300	mA	
CAPACITANCES					
Final accelerator to external conductive coating	Cg3,g5(1)/m		420	pF	
Cathode to all other elements	C _k		5	pF	
Control grid to all other elements	c_{g_1}		7	pF	
FOCUSING	*	electr	ostati	С	

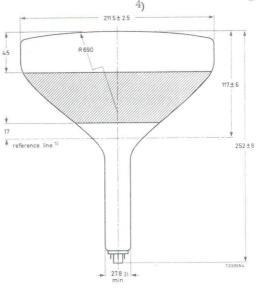
For focusing voltage providing optimum focus at a beam current of 100 $\mu\mathrm{A}$ see under

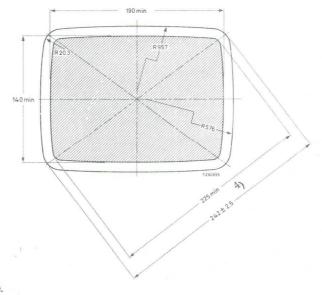
November 1982

"Typical operating conditions".

M24-100W

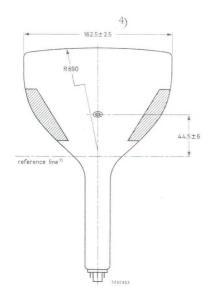
DEFLECTION 3)


Diagonal deflection angle


MECHANICAL DATA

magnetic

900


Dimensions in mm

Notes see next page.

MECHANICAL DATA (continued)

Mounting position : any, except vertical with the screen downward and the axis of the tube

making an angle of less than 200 with the vertical.

Cavity contact

CT8

Accessories

Base

Socket Final accelerator contact connector 2422 501 06001 type 55563A

Neo eightar (B8H)

PICTURE CENTRING MAGNET

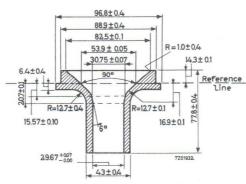
Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

NOTES

- 1) The reference line is determined by the plane of the upper edge of the of the flange of reference line gauge when the gauge is resting on the cone.
- 2) The maximum dimension is determined by the reference line gauge.
- 3) Deflection coil AT1071/03 is recommended. If another coil is considered, it is advisable to contact the local tube supplier.
- ⁴) The bulge at the spliceline seal may increase the indicated maximum values for envelope width, diagonal and height by not more than 6,4 mm, but at any point around the seal the bulge will not protrude more than 3,2 mm beyond the envelope surface.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$V_{g_3,g_5(l)}$	16	kV
Focusing electrode voltage	V_{g_4} 0 to	400	V
First accelerator voltage	v_{g_2}	600	V
Grid no.1 voltage for extinction of focused raster	V _{g1} -32 to	-85	V


RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, at a beam current of $50\,\mu\text{A}\,(200\text{cd/m}^2=200\,\text{nit})$ The resolution can be improved by the use of beam centring magnet catalogue number 3322 142 11401, supplied on request.

LIMITING VALUES (Absolute max. rating system)

Final accelerator	voltage	$V_{g_3,g_5(1)}$	max. min.	18 10	kV kV
Focusing electrode	e voltage	$^{\mathrm{V}_{\mathrm{g}_{4}}}_{\mathrm{-V}_{\mathrm{g}_{4}}}$	max.	$0, \frac{1}{5}$	kV kV
First accelerator	voltage	v_{g_2}	max. min.	800 300	V V
Grid no.1 voltage,	negative positive positive peak	$\begin{array}{c} \text{-V}_{g_1} \\ \text{V}_{g_1} \\ \text{V}_{g_{1p}} \end{array}$	max. max. max.	150 0 2	V V V
Cathode to heater	voltage, positive positive peak negative negative peak	V _{kf} V _{kf} -V _{kf} -V _{kf}	max. max. max.	250 300 135 180	V V 1) V

REFERENCE LINE GAUGE

 $^{^{1}}$) During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode,

MONITOR TUBE

The M24-101W is a 24 cm-diagonal rectangular television tube with integral protection primarily intended for use as a monitor or display tube.

QUICK RE	FERENCE DATA			
Deflection angle			90 °	
Focusing	electrostatic			
Resolution			900	lines
Overall length		<	260	mm

SCREEN

Metal backed phosphor

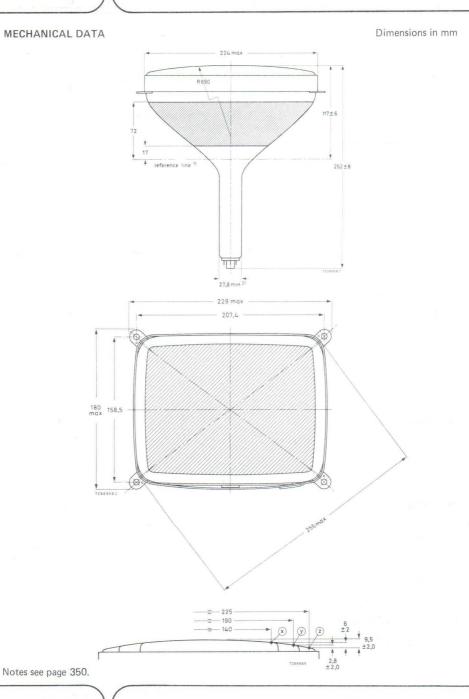
Luminescence	white		
Light transmission of face glass		52	%
Useful diagonal	≥	225	mm

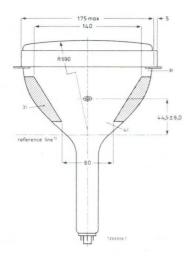
Useful width ≥ 190 mm Useful height ≥ 140 mm

HEATING

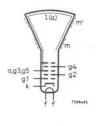
Indirect by a.c. or d.c.; parallel supply

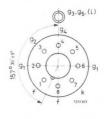
Heater voltage	$V_{\mathbf{f}}$	6,3	V
Heater current	$I_{\mathbf{f}}$	300	mA

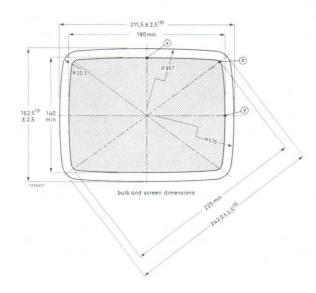

FOCUSING electrostatic

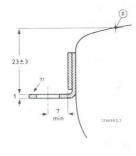

For focusing voltage providing optimum focus at a beam current of 100 $\mu\mathrm{A}$ see under "Typical operating conditions".

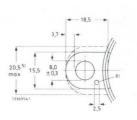
DEFLECTION magne	
Diagonal deflection angle	90 °
Horizontal deflection angle	80 o
Vertical deflection angle	65 ^O
Deflection and AT1071/03 is recommended	


Deflection coil AT1071/03 is recommended.


DEEL ECTION







Notes see next page.

Mounting position: any

Base

Neo eightar (B8H), IEC 67-I-31a

Cavity contact

CT8, IEC67-III-2

Accessories

Socket

2422 501 06001

Final accelerator contact connector

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading of the raster.

NOTES TO OUTLINE DRAWINGS

- 1) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge with the gauge resting on the cone.
- 2) The maximum dimension is determined by the reference line gauge.
- 3) This tube has an external conductive coating (m), which must be earthed. The capacitance of this coating to the final accelerator is used for smoothing the EHT. The tube marking and warning labels are on the side of the cone opposite the final accelerator contact, and this side should not be used for making contact to the conductive coating.
- 4) This area must be kept clean.
- 5) Minimum space to be reserved for mounting lugs.
- 6) The mounting screws in the cabinet must be situated within a circle with a diameter of 4 mm drawn around the true geometrical position (corners of a rectangle of 207, 4 mm x 158, 5 mm).
- 7) The maximum displacement of any lug with respect to the plane through the other three lugs is 2 mm.
- 8) The metal rim-band must be earthed. The hole of 2,5 mm diameter in each lug is provided for this purpose.
- 9) The bulge at the spliceline seal may increase the indicated maximum values for envelope width, diagonal and height by not more than 6, 4 mm, but at any point around the seal the bulge will not protrude more than 3, 2 mm beyond the envelope surface.

350

CAPACITANCES

conductive coating	$C_{g_3}, g_5(\ell)/m$	420	pF
Final accelerator to metal band	$C_{g3}, g_5(\ell)/m'$	200	pF
Cathode to all other elements	C_k	5	pF
Control grid to all other elements	C_{g1}	7	pF

TYPICAL OPERATING CONDITIONS

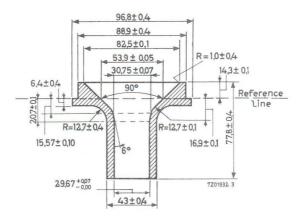
Final accelerator voltage	v_{g_3}	g ₅ (l)		16	kV
Focusing electrode voltage	V_{g_4}	0	to	400	V
First accelerator voltage	v_{g_2}			600	V
Grid 1 voltage for extinction of focused raster	v_{g_1}	-32	to	-85	V

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a beam current of 50 $\mu A\colon 900\ lines$ (luminance $\approx\!200\ cd/m^2)$.

If necessary, the picture quality can be improved by using a beam centring magnet. This magnet, catalogue number 3322 142 11401, can be supplied on request.

LIMITING VALUES (Absolute max. rating system)


Final accelerator voltage	$V_{g_3}, g_5(\ell)$	max. min.	18 10	kV kV
Focusing electrode voltage, positive negative	V _{g4} -V _{g4}	max.	1000 500	V V
First accelerator voltage	v_{g_2}	max. min.	800 300	V V
Grid 1 voltage, negative positive positive peak	$\begin{array}{c} ^{-V}g_1 \\ ^{V}g_1 \\ ^{V}g_{1p} \end{array}$	max. max. max.	150 0 2	V V V
Cathode to heater voltage, positive positive peak negative negative peak	V _{kf} V _{kfp} -V _{kf} -V _{kfp}	max. max. max.	250 300 135 180	V V 1) V

May 1976

¹) During a warm-up period not exceeding $15~\mathrm{s}$ the heater may be $410~\mathrm{V}$ negative with respect to the cathode.

REFERENCE LINE GAUGE

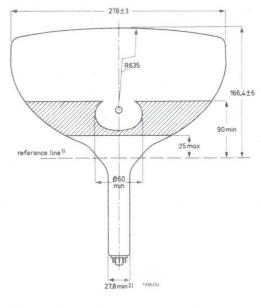
Dimensions in mm

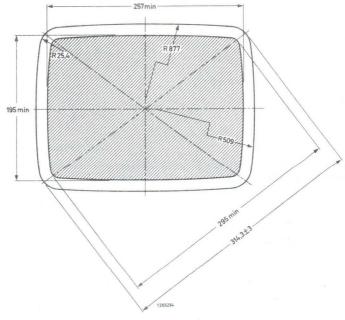
MONITOR TUBE

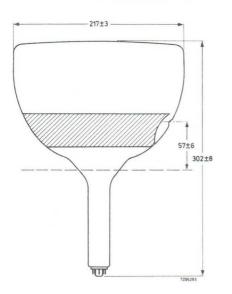
The M31-130W is a 31 cm-diagonal rectangular television tube with metal-backed screen primarily intended for use as a monitor or display tube.

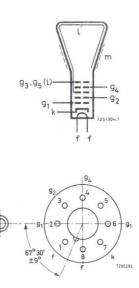
QUICK REFERENCE DATA			
Deflection angle		90 °	
Focusing	electros	static	
Resolution		900	lines
Overall length	max.	310	mm
SCREEN			
Metal-backed phosphor			
Luminescence		white	
Light transmission of face glass	approx.	50	%
Useful diagonal	min.	295	mm
Useful width	min.	257	mm
Useful height	min.	195	mm
HEATING			
Indirect by a.c. or d.c.; parallel supply			
Heater voltage	$V_{\mathbf{f}}$	6, 3	V
Heater current	$I_{\mathbf{f}}$	300	mA
FOCUSING	electros	static	

For focusing voltage providing optimum focus at a beam current of 100 μA see under "Typical operating conditions".


DEFLECTION magnetic


90 0 Diagonal deflection angle


Deflection coil AT1071/03 is recommended.


MECHANICAL DATA

Dimensions in mm

 $\underline{\text{Mounting position:}}$ any, except vertical with the screen down and the axis of the tube making an angle of less than 20° with the vertical.

Base	Neo eightar (B8H), IEC67-I-31a
Cavity contact	CT8, IEC67-III-2

Accessories

Socket	2422 501 06001
Final accelerator contact connector	type 55563A

CAPACITANCES

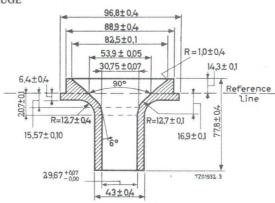
Final accelerator to external			
conductive coating	$C_{g3}, g_5(\ell)/m$	1100	pF
Cathode to all other elements	C_k	5	pF
Control grid to all other elements	C_{g_1}	, 7	pF

¹⁾ The reference line is determined by the plane of the upper edge of the flange of the reference line gauge with the gauge resting on the cone.

 $^{^{2}\/}$ The maximum dimension is determined by the reference line gauge.

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$V_{g3,g5}(\ell)$	16	kV
Focusing electrode voltage	v_{g4}	0 to 400	V
First accelerator voltage	v_{g_2}	600	V
Grid no. 1 voltage for extinction of focused raster	v_{g_1}	-32 to -85	V


RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a beam current of 50 μ A: 900 lines The resolution can be improved by the use of beam centring magnet, catalogue number 3322 142 11401, supplied on request.

LIMITING VALUES (Absolute max. rating system)

Final accelerator voltage	$V_{g3}, g_5(\ell)$	max. min.	18 10	kV kV	
Focusing electrode voltage, positive	V_{g_4} - V_{g_4}	max.	1000 500	V V	
First accelerator voltage	v_{g_2}	max. min.	800 300	V V	
Grid no. 1 voltage, negative positive positive peak	$\begin{array}{c} - v_{g_1} \\ v_{g_1} \\ v_{g_{1p}} \end{array}$	max. max.	150 0 2	V V V	
Cathode to heater voltage, positive positive peak negative negative peak	V _{kf} V _{kfp} - V _{kf} - V _{kfp}	max. max. max.	250 300 135 180	V V V	1)

REFERENCE LINE GAUGE

¹⁾ During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.

MONITOR TUBE

The M31-131W is a 31 cm-diagonal rectangular television tube with integral protection primarily intended for use as a monitor or display tube.

QUICK RE	FERENCE DATA
Deflection angle	90 °
Focusing	electrostatic
Resolution	900 lir
Overall length	≤ 310 m

SCREEN

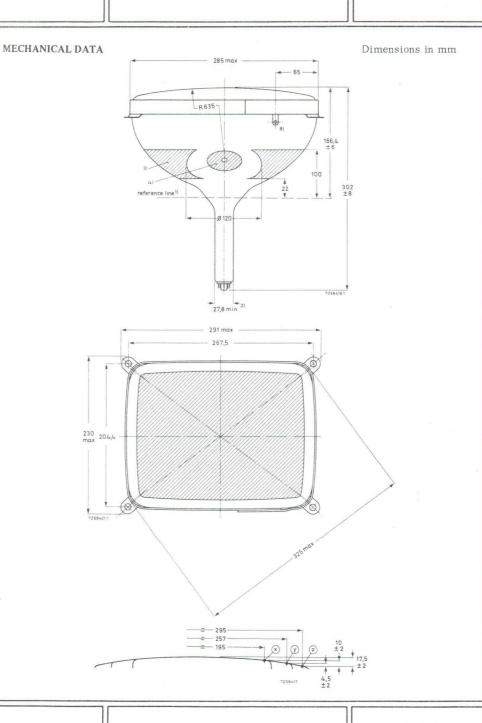
Metal backed phosphor

Luminescence		white			
	Light transmission of face glass	approx.	50	%	
	Useful diagonal	≥	295	mm	
	Useful width	≥	257	mm	
	Useful height	≥	195	mm	

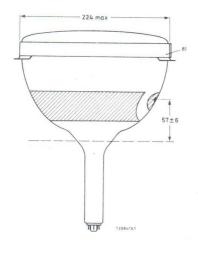
HEATING

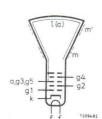
Indirect by a.c. or d.c.; parallel supply

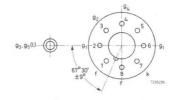
Heater voltage	$v_{\mathbf{f}}$	6,3	V
	·		
Heater current	I_{f}	300	mA

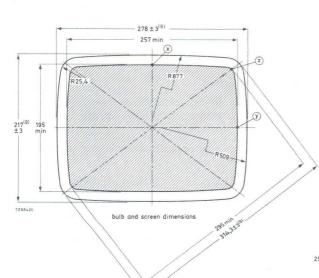

FOCUSING electrostatic

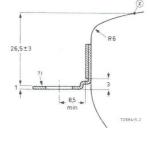
For focusing voltage providing optimum focus at a beam current of 100 μA see under "Typical operating conditions".


Typical operating conditions.	
DEFLECTION	magnetic


Diagonal deflection angle


Deflection coil AT1071/03 is recommended.




Dimensions in mm

25 max⁵⁾ 20 10±0,3

See "Notes to outline drawings".

Mounting position : any

Base Neo eightar (B8H), IEC 67-I-31a

Cavity contact CT8, IEC 67-III-2

Accessories

Socket 2422 501 06001

Final accelerator contact connector type 55563A

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to 800 A/m (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading the raster.

NOTES TO OUTLINE DRAWINGS

- The reference line is determined by the plane of the upper edge of the flange of the reference line gauge with the gauge resting on the cone.
- 2) The maximum dimension is determined by the reference line gauge.
- 3) This tube has a external conductive coating (m), which must be earthed. The capacitance of this coating to the final accelerator is used for smoothing the EHT. The tube marking and warning labels are on the side of the cone opposite the final accelerator contact, and this side should not be used for making contact to the conductive coating.
- 4) This area must be kept clean.
- 5) Minimum space to be reserved for mounting lugs.
- 6) The mounting screws in the cabinet must be situated within a circle with a diameter of 6 mm drawn around the true geometrical position (corners of a rectangle of 267,5 mm x 204,4 mm).
- 7) The maximum displacement of any lug, with respect to the plane through the other three lugs is 2 mm.
- 8) The metal rim-band must be earthed. For this purpose the band is provided with a tag.
- 9) The bulge of the spliceline seal may increase the indicated maximum values for envelope width, diagonal, and height by not more than 6,4 mm, but at any point around the seal the bulge will not protrude more than 3,2 mm beyond the envelope surface.

CAPACITANCES

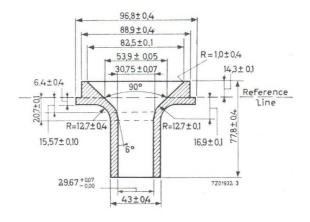
Final accelerator to external

conductive coating	$C_{g3}, g_5(l)/m$	1200	pF
Final accelerator to metal band	C_{g_3} , $g_5(\ell)/m$	150	pF
Cathode to all other elements	C_k	5	pF
Control grid to all other elements	c_{g_1}	7	pF
TYPICAL OPERATING CONDITIONS			
Final accelerator voltage	$V_{g_3}, g_5(\ell)$	16	kV
Focusing electrode voltage	y_{g_4} 0	to 400	V
First accelerator voltage	v_{g_2}	600	V
Grid 1 voltage for extinction of focused raster	V _{g1} -32	to -85	V

RESOLUTION

Resolution at screen centre measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, and at a beam current of $50\,\mu\text{A}$: $900\,\text{lines}$

If necessary, the picture quality can be improved by using a beam centring magnet. This magnet, catalogue number 3322 142 11401, can be supplied on request.


LIMITING VALUES (Abso	plute max, rating s	system)				
Final accelerator voltage		V ~-(1)	max.	18	kV	
I mai accelerator voltage		$V_{g3}, g_5(l)$	min.	10	kV	
Focusing electrode voltage	ge, positive	V_{g_4}	max.	1000	V	
	negative	-Vg ₄	max.	500	V	
First accelerator voltage			max.	800	V	
First accelerator voltage		v_{g_2}	min.	300	V	
Grid voltage, negative		-Vg1	max.	150	V	
positive		v_{g_1}	max.	0	V	
positive pe	ak	$v_{g_{1p}}$	max.	2	V	
Cathode to heater voltage	, positive	v_{kf}	max.	250	V	
	positive peak	Vkfp	max.	300	V	
	negative	$\frac{V_{\mathrm{kfp}}}{-V_{\mathrm{kf}}}$	max.	135	V^{-1})	
	negative peak	-V _{kfp}	max.	180	V	

May 1976

¹⁾ During a warm-up period not exceeding 15 s the heater may be 410 V negative with respect to the cathode.

REFERENCE LINE GAUGE

Dimensions in mm

MONITOR TUBE

The M38-120W is a 38 cm-diagonal rectangular television tube with metal backed screen and integral protection primarily intended for use as a monitor tube.

On request this tube can also be supplied with a WA screen phosphor.

QUICK R	EFERENCE DATA		
Deflection angle	110 °		
Focusing	electrostatic		
Resolution	min. 650 lines		
Overall length	max, 279,5 mm		

SCREEN

Metal backed phosphor

Luminescence	white
Light transmission of face glass	50 %
Useful diagonal	min. 350 mm
Useful width	min. 290 mm
Useful height	min. 226 mm

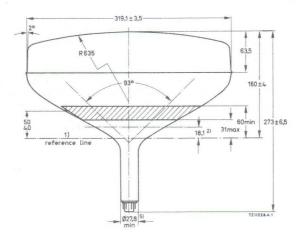
HEATING

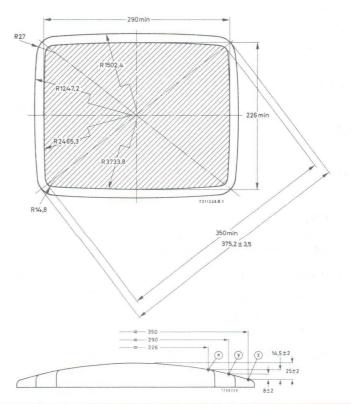
Indirect by a.c. or d.c.; parallel or series supply

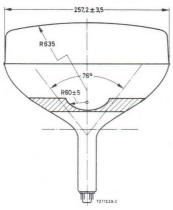
Heater voltage	$V_{\mathbf{f}}$	6,3	V
Heater current	$I_{\mathbf{f}}$	300	mA

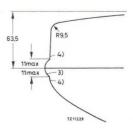
FOCUSING electrostatic

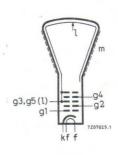
For focusing voltage providing optimum focus at screen centre at a beam current of $100\,\mu\!A$ see under "Typical operating conditions".


DEFLECTION	magnetic
Diagonal deflection angle	110 °
Horizontal deflection angle	93 °
Vertical deflection angle	76 °
D. C	


Deflection coil AT1038/40A or AT1039/.. is recommended.


M38-120W


MECHANICAL DATA


Dimensions in mm



Mounting position: any

Base

Cavity contact

Accessories

Final accelerator contact connector Socket

Neo eightar (B8H), IEC67-I-31a

CT8, IEC67-III-2

type 55563A 2422 501 06001

NOTES TO OUTLINE DRAWING

- 1) The reference line is determined by the plane of the upper edge of the flange of reference line gauge, (JEDEC126) when the gauge is resting on the cone.
- 2) End of guaranteed contour. The maximum neck and cone contour is given by the Reference line gauge.
- 3) Bulge at splice-line seal may increase the indicated maximum value for envelope width, diagonal and height by not more than 6,4 mm, but at any point around the seal, the bulge will not protrude more than 3,2 mm beyond the envelope surface at the location specified for dimensioning the envelope width, diagonal and height.
- ⁴) The tube should be supported on both sides of the bulge. The mechanism used should provide clearance for the maximum dimensions of the bulge.
- 5) The maximum dimension is determined by the reference line gauge

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis adjustable from 0 to $800~\mathrm{A/m}$ (0 to $10~\mathrm{oersted}$). Adjustment of the centring magnet should not be such that a general reduction in brightness or shading of the raster occurs.

CAPACITANCE

Control grid to all other elements	C_{g_1}	6,0	pF
Cathode to all other elements	C_k	5,0	pF
Final accelerator to external conductive coating	$C_{g3,g5}(\ell)/m$	600	pF

TYPICAL OPERATING CONDITIONS

Final accelerator voltage	$V_{g3}, g_5(\ell)$	16	kV
Focusing electrode voltage	V_{g_4}	0 to 400	V^{1})
First accelerator voltage	$V_{g_2}^{g_4}$	400	V
Grid No. 1 voltage for visual	82		
extinction of a focused raster	- V _{g1}	40 to 85	V

RESOLUTION

Resolution at screen centre, measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, a beam current of $100~\mu A$, and focusing voltage adjusted for optimum spot size min. 650 lines

LIMITING VALUES (Absolute max. rating system)

Voltages are specified with respect to cathode unless otherwise stated.

Einel anneleurten melte m	1	17 (4)	max.	18	kV
Final accelerator voltage		$V_{g3,g5}(\ell)$	min.	13	kV
Focusing electrode voltage		$V_{Q'A}$	max.	1	kV
rocusing electrode voltage		$-\frac{v_{g_4}}{v_{g_4}}$	max.	0,5	kV
First accelerator voltage		77	max.	550	V
Tilst accelerator voltage		v_{g_2}	min.	350	V
Control grid voltage, nega	tive	-V _{g1} V _{g1}	max.	150	V
posi	tive	$V_{g_1}^{s_1}$	max.	0	V
posi	tive peak	$v_{g_{1_p}}^{s_1}$	max.	2	V
Cathode to heater voltage,	positive	V_{kf}^{P}	max.	250	V
	positive peak	v_{kf_p}	max.	300	V
	negative	-V _{kf}	max.	135	V
	negative peak	-Vkfp	max.	180	V

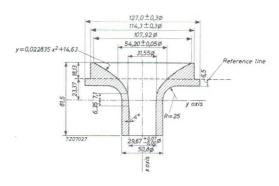
With the small change in focus spot size with variation of focus voltage the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage of at least -100 V to +500 V will be required.

CIRCUIT DESIGN VALUES

Focusing electrode current, positive negative	$-I_{g_4}$	max.	25 25	μ Α μ Α
Grid no. 2 current, positive negative	$-\mathrm{I}_{\mathrm{g}_2}^{\mathrm{I}_{\mathrm{g}_2}}$	max.	5 5	μ Α μ Α
MAXIMUM CIRCUIT VALUES				
Resistance between cathode and heater	R_{kf}	max.	1	$M\Omega$
Impedance between cathode and heater $(f = 50 \text{ Hz})$	\mathbf{z}_{kf}	max.	500	kΩ
Resistance between grid no. 1 and earth	R_{g_1}	max.	1,5	$\mathrm{M}\Omega$
Impedance between cathode and earth $(f = 50 \text{ Hz})$	z_k	max.	100	kΩ

WARNING

X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV.


EXTERNAL CONDUCTIVE COATING

This tube has an external conductive coating (m), which must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.

REFERENCE LINE GAUGE

Dimensions in mm

JEDEC 126

REMARK

With the high voltage used with this tube internal flash-overs may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.

The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible. On request the tube can be supplied with spark traps mounted in the base (ring trap base).

368

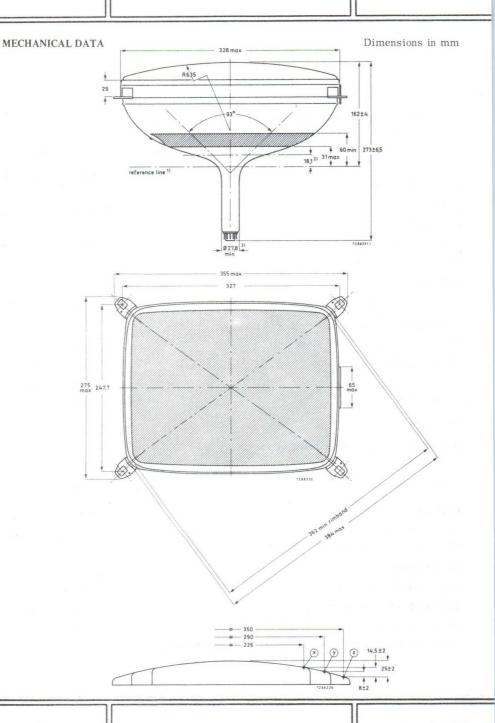
MONITOR TUBE

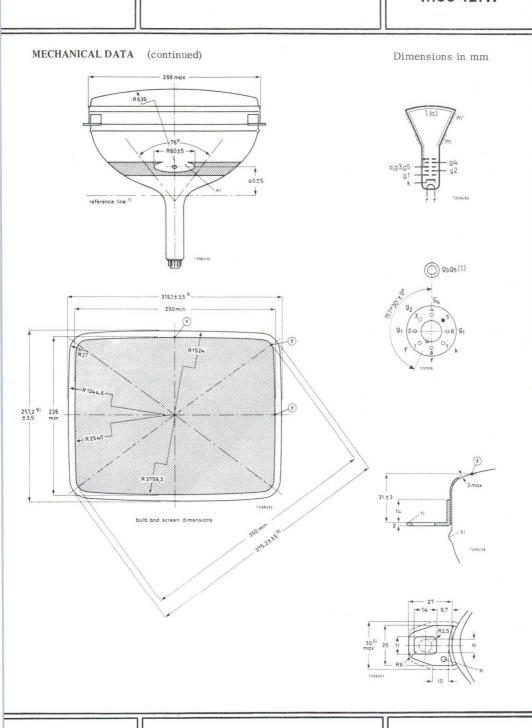
The M38-121 is a 38 cm-diagonal rectangular television tube with metal backed screen and integral protection primarily intended for use as a monitor or display tube.

QUICK REFEREN	QUICK REFERENCE DATA				
Deflection angle		110 °			
Focusing	electro	static			
Resolution	min.	650	lines		
Overall length	max.	279,5	mm		
Metal backed phosphor Luminescence	,	white			
SCREEN Metal backed phosphor					
Light transmission of face glass		50	%		
Jseful diagonal	min.	350	mm		
Jseful width	min.	290	mm		
Useful height	min.	226	min		

HEATING

Indirect by a.c. or d.c.; parallel or series supply


Heater voltage	v_{f}	6,3	V
Heater current	$I_{\mathbf{f}}$	300	mA


FOCUSING electrostatic

For focusing voltage providing optimum focus at screen centre at a beam current of 100 μA see under "Typical operating conditions".

DEFLECTION	magnetic
Diagonal deflection angle	110 °
Horizontal deflection angle	930
Vertical deflection angle	76°
Deflection coil AT1038/40A or AT1039/ is recommen	ided.

M38-121W

Mounting position: any

Base Neo eightar (B8H), IEC67-I-31a

Cavity contact CT8, IEC67-III-2

Accessories

Socket 2422 501 06001

Final accelerator contact connector type 55563

PICTURE CENTRING MAGNET

Field intensity perpendicular to the tube axis from 0 to 800 A/m (0 to 10 Oe). Adjustment of the centring magnet should not cause a general reduction in brightness or shading of the raster.

NOTES TO OUTLINE DRAWING

- 1) The reference line is determined by the plane of the upper edge of the flange of the reference line gauge, (JEDEC 126) when the gauge is resting on the cone.
- 2) End of guaranteed contour. The maximum neck and cone countour is given by the reference line gauge.
- 3) The maximum dimension is given by the reference line gauge.
- 4) This area must be kept clean.
- 5) Minimum space to the reserved for mounting lugs.
- 6) The mounting screws in the cabinet must be situated within a circle with a diameter of 7,5 mm drawn around the true geometrical positions (corners of a rectangle of $327 \text{ mm} \times 247,7 \text{ mm}$).
- 7) The maximum displacement of any lug with respect to the plane trough the other three lugs is 2 mm.
- ⁸) The metal rimband must be earthed. Holes of 3 mm diameter in each lug are provided for this purpose.
- 9) The bulge at the pliceline seal may increase the indicated maximum value for envelope width, diagonal and height by not more than 6, 4 mm, but at any point around the seal the bulge will not protrude more than 3, 2 mm beyond the envelope surface.

CAPACITANCES

Final accelerator to external conductive coating	C	450 to 650	pF
9	$^{\mathrm{C}}$ g3,g5(ℓ)/m		
Final accelerator to metal band	Cg3,g58l9/m'	240	pF
Cathode to all other elements	$C_{\mathbf{k}}$	5	pF
Control grid to all other elements	C_{g1}	6	pF
TYPICAL OPERATING CONDITIONS			
Final accelerator voltage	$v_{g3,g5(\ell)}$	16	kV
Focusing electrode voltage	v_{g4}	0 to 400	V^{-1})
First accelerator voltage	v_{g2}	400	V
Grid No. 1 voltage for visual extinction of a focused raster	$-v_{g1}$	40 to 85	V

RESOLUTION

Resolution at screen centre, measured with the shrinking raster method (non-interlaced raster), under typical operating conditions, a beam current of $100~\mu\text{A}$, and focusing voltage adjusted for optimum spot size min. 650 lines

LIMITING VALUES (Absolute max. rating system)

Voltages are specified with respect to cathode unless otherwise stated.

Final accelerator voltage		$V_{g3,g5(\ell)}$	max. 18 min. 13	kV kV
Focusing electrode voltage	2	$V_{g4} - V_{g4}$	max.1000 max. 500	V V
First accelerator voltage		v_{g2}	max. 550 min. 350	V
Control grid voltage, nega posi posi		$\begin{array}{c} -V_{g1} \\ V_{g1} \\ V_{g1p} \end{array}$	max. 150 max. 0 max. 2	V V V
Cathode to heater voltage,	positive peak	V _{kf} V _{kfp}	max. 250 max. 300	V V
	negative negative peak	$-V_{\mathrm{kf}}$ $-V_{\mathrm{kfp}}$	max. 135 max. 180	V V

¹⁾ With the small change in focus spot size with variation of focus voltage the limit of 0 to 400 V is such that an acceptable focus quality is obtained within this range. If it is required to pass through the point of focus, a voltage range of at least -100 to +500 V will be required.

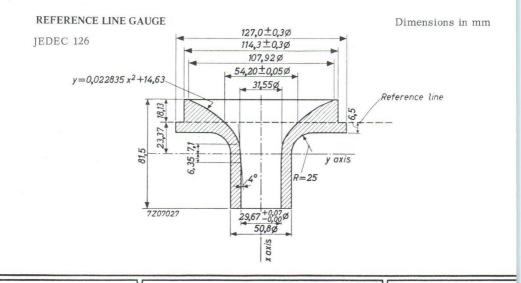
M38-121W

CIRCUIT DESIGN VALUES

Focusing electrode curren	t, positive negative	${\overset{\operatorname{Ig4}}{\overset{-}{\operatorname{Ig4}}}}$	max.	25 25	μΑ μΑ	
Grid No.2 current, positive negative ne		$-1^{\mathrm{Ig}2}_{\mathrm{g}2}$	max.	5 5	μΑ μΑ	
MAXIMUM CIRCUIT VALUE	S					
Resistance between cathod	e and heater	$R_{\mathbf{kf}}$	max.	1	$M\Omega$	
Impedance between cathod $(f = 50 \text{ Hz})$	e and heater	$Z_{ m kf}$	max.	500	kΩ	
Resistance between grid no	o. 1 and earth	R_{g1}	max.	1,5	$M\Omega$	

WARNING

(f = 50 Hz)


X-ray shielding is advisable to give protection against possible danger of personal injury arising from prolonged exposure at close range to this tube when operated above 16 kV.

 Z_k

EXTERNAL CONDUCTIVE COATING

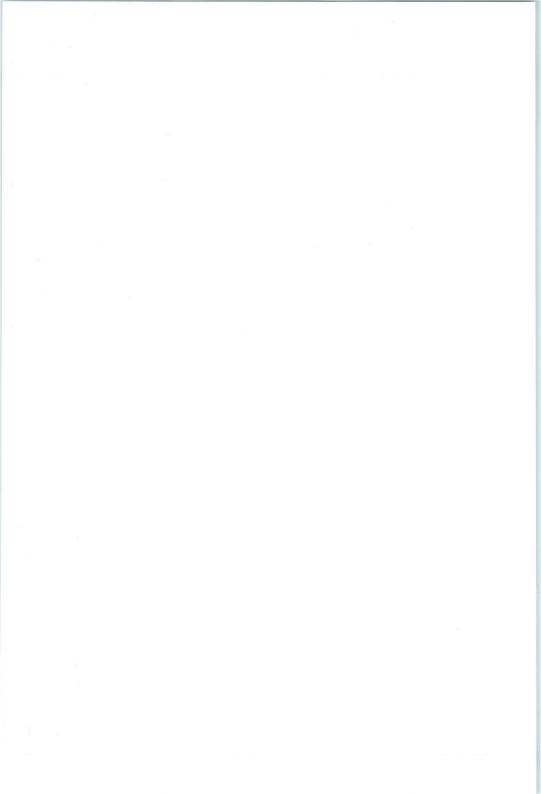
Impedance between cathode and earth

This tube has an external conductive coating (m), wich must be earthed and capacitance of this to the final electrode is used to provide smoothing for the EHT supply. The tube marking and warning labels are on the side of the cone opposite the final electrode connector and this side should not be used for making contact to the external conductive coating.


max. 100

kΩ

REMARK


With the high voltage used with this tube internal flash-overs may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps.

The spark gaps must be connected as follows:

No other connections between the outer conductive coating and the chassis are permissible.

On request the tube can be supplied with spark traps mounted in the base (ring trap base).

VERY HIGH RESOLUTION CATHODE-RAY TUBE

The M38-200 is a 38 cm, 700 data graphic display tube with a resolution of more than 6,6 line pairs per mm (corresponding to 3000 TV lines). Used in conjunction with deflection unit AT1991 it is eminently suitable for full page document display.

The resolution easily meets the stringent requirements of the CCITT recommendations for digital group III, high resolution facsimile transmission, and those of graphic displays for computer-aided design.

Tubes with white (WA and WE) or green (GH) screen phosphors are standard; the WE phosphor is recommended for photographic applications. Other phosphors are available to special order. The tubes have a metal-backed screen and rim band for implosion protection.

QUICK REFERENCE DATA

Deflection angle	700
Face diagonal	38 cm
Overall length	478 mm
Neck diameter	36,8 mm
Screen dimensions	226 mm x 291 mm
Resolution	1728 x 2288 pixels*

^{*} Pixel = picture element.

ELECTRICAL DATA

Capacitances

cathode to all other electrodes

grid 1 to all other electrodes

final accelerator to external conductive coating

final accelerator to tension band

Focusing method

Deflection method

Deflection angle

Heating

heater voltage heater current

OPTICAL DATA

Screen

Phosphor type fluorescent colour

persistence

Screen dimensions

Minimum useful screen diagonal

Preferable useful scanning area

Reduction for A4 size (297 mm x 210 mm)

Reduction for 11" x 81/2" size (279 mm x 216 mm)

Light transmission of screen

 $\begin{array}{cccc} C_k & 4 & pF \\ C_{g1} & 12 & pF \\ C_{g3}, g5(I)/m & 1000 & pF \\ C_{g3}, g5(I)/m' & 220 & pF \\ electrostatic & \\ magnetic* & \\ approx. 70^{\circ} & \end{array}$

indirect by a.c. or d.c. V_f 6,3 V \pm 5 %

If 190 mA**

metal-backed phosphor

GH WA WE
green white medium medium short whose well with the medium short where well well as the medium short where well well as the medium short where well as the medium short where well as the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short where we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium short which we will be a simple of the medium sho

220 mm x 291 mm

352 mm

200 mm x 270 mm

9%

7,4%

approx. 50%

^{*} To obtain the best tube performance, deflection unit AT1991 should be used.

^{**} Liable to be modified into 240 mA.

MECHANICAL DATA (see also the figures on the following pages)

Overall length

Base

Neck diameter

Final accelerator contact

Mounting position

Implosion protection

Net mass Accessories

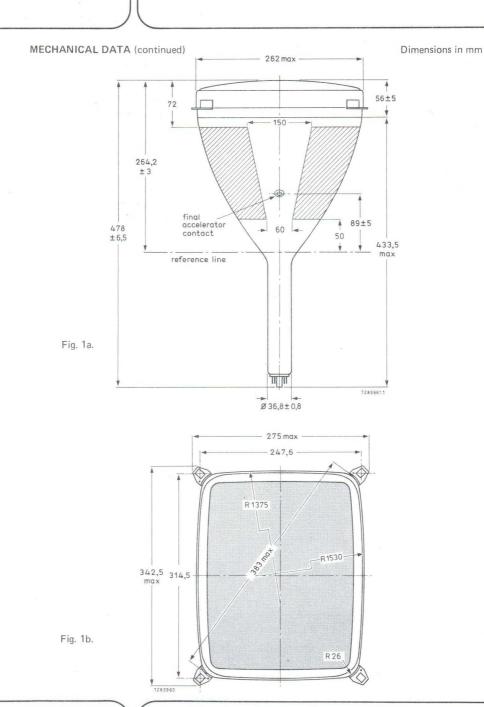
socket

final accelerator contact connector deflection unit

478 ± 6,5 mm

36,8 ± 0,8 mm

JEDEC B12-246


cavity contact, CT8; IEC 67-III-2

any

rim band

approx. 6 kg

type 55589 type 55563A type AT1991

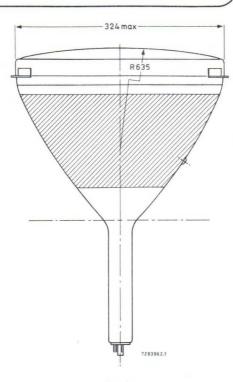


Fig. 1c.

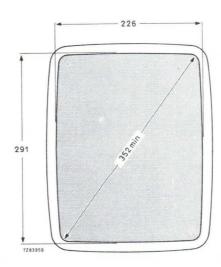
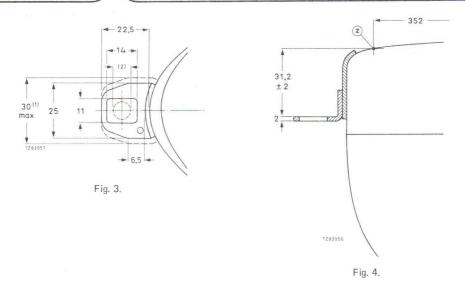



Fig. 2.

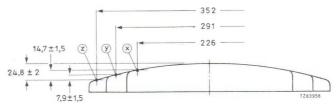
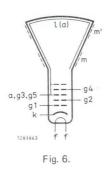



Fig. 5.

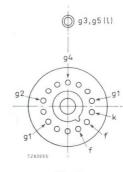
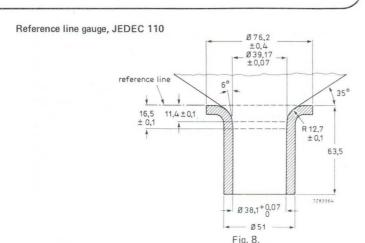



Fig. 7.

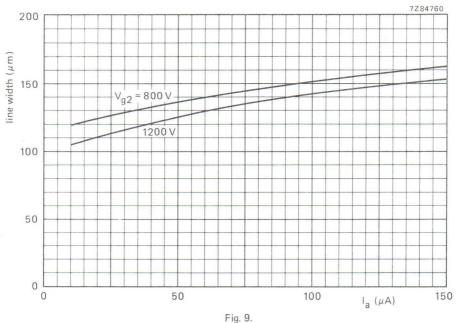
Notes

- 1. Minimum space to be reserved for mounting lugs.
- 2. The mounting screws in the cabinet must be situated within a circle with a diameter 7,5 mm drawn around the true geometrical positions (corners of a rectangle of 314,5 mm x 247,6 mm).

RECOMMENDED OPERATING CONDITIONS: voltages with respect to cathode

RECOMMENDED OPERATING CONDITIONS; voltages with respect to cathode						
Final accelerator voltage	V _{g3, g5}	18	kV			
Focusing electrode voltage	V_{g4}	5 to 7	kV*			
Dynamic focusing	ΔV_{g4}	200 to 300	V**			
First accelerator voltage	V_{g2}	800	V			
Cut-off voltage for visual extinction of focused spot	$-V_{g1}$	50 to 110	V			
Grid drive for 30 μA screen current	V_d	approx. 20	V			

RESOLUTION


With a beam current (I_a) of 30 μ A, the spot diameter at a brightness level of 50% is approx. 120 μ m (see Fig. 9).

CIRCUIT DESIGN VALUES

Grid 4 current positive negative		l _{g4} l _{g4}	max. max.	25 μA 25 μA
Grid 2 current positive negative		l _{g2} -l _{g2}	max.	5 μA 5 μA

* For optimum focus at screen centre.

^{**} To obtain optimum focus over the whole useful screen area, dynamic correction voltages should be applied in N-S and E-W directions; these voltages should be adjustable separately within the indicated range.

LIMITING VALUES (Absolute maximum rating system)

Voltages are specified with respect to cathode unless otherwise stated.

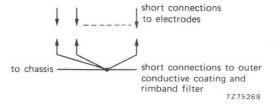
V _g 3, g5(ℓ)	max.	20	kV
V_{g4}	max.		kV kV
V_{g2}	max.	1,2	kV
−V _g 1 V _g 1	max.	140	V V
V _{kf} V _{kfp} -V _{kf}	max. max.	250 300 135	V V
- чктр	max.	100	
Rkf	max.	1	Ω M
Zkf	max.	500	$k\Omega$
R _{g1}	max.	1,5	ΩM
Z _k	max.	100	$k\Omega$
	V _{g4} V _{g2} -V _{g1} V _{g1} V _{kf} V _{kfp} -V _{kf} -V _{kfp} R _{kf} Z _{kf} R _{g1}	$\begin{array}{cccc} v_{g4} & & \text{max.} \\ v_{g2} & & \text{max.} \\ \end{array}$ $\begin{array}{cccc} -v_{g1} & & \text{max.} \\ v_{g1} & & \text{max.} \\ \end{array}$ $\begin{array}{cccc} v_{kf} & & \text{max.} \\ -v_{kfp} & & \text{max.} \\ -v_{kfp} & & \text{max.} \\ \end{array}$ $\begin{array}{cccc} R_{kf} & & \text{max.} \\ Z_{kf} & & \text{max.} \\ R_{g1} & & \text{max.} \end{array}$	Vg4 max. 8 Wg4 min. 4 Vg2 max. 1,2 -Vg1 max. 140 Vg1 max. 0 Vkf max. 250 Vkfp max. 300 -Vkf max. 135 -Vkfp max. 180 Rkf max. 1 Zkf max. 500 Rg1 max. 1,5

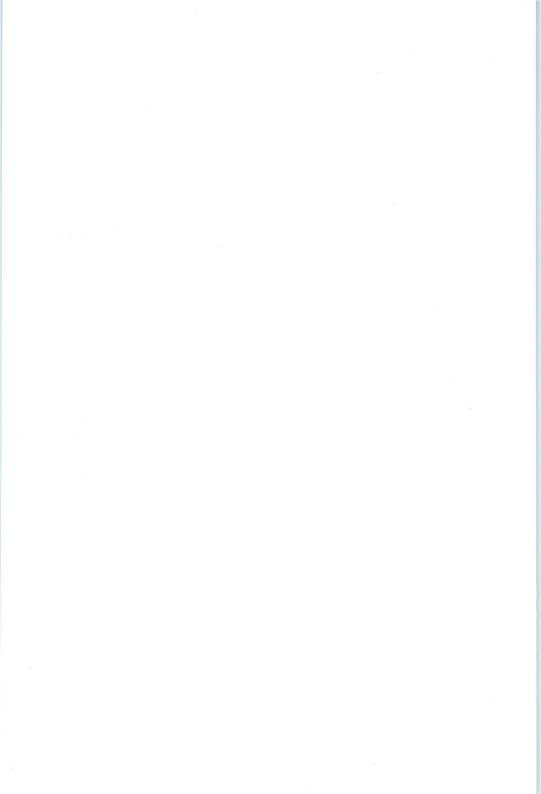
X-RADIATION

Radiation emitted will not exceed 0,5 mR/h throughout the useful life of the tube when operated within the given ratings.

FLASHOVER PROTECTION

With the high voltage used with this tube internal flashovers may occur. These may destroy the cathode of the tube. Therefore it is necessary to provide protective circuits, using spark gaps. The spark gaps must be connected as follows:




Fig. 11.

No other connections between the outer conductive coating and the chassis are permissible.

VERY HIGH RESOLUTION CATHODE-RAY TUBE/COIL ASSEMBLY

This tube/coil assembly consists of the very high resolution tube M38-200 and the deflection unit AT1991; it is adjusted for astigmatism correction of the spot at the screen centre. For data see the data sheets of M38-200 and AT1991.

FLYING SPOT SCANNER TUBE

FLYING SPOT SCANNER TUBE

The Q13-110GU is a 13 cm diameter cathode-ray tube intended for flying spot applications.

QUICK REFERENCE DA	TA	
Accelerator voltage	25	kV
Deflection angle	400	
Resolution	1000	lines

SCREEN

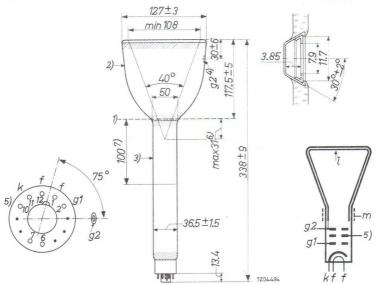
Metal backed phosphor

Type : GU Colour : white Persistance : very short

Useful screen diameter min. 108 mm

HEATING

Indirect by A.C. or D.C.; series or parallel supply


Heater voltage	$V_{ m f}$	6,3	V
Heater current	${ m I_f}$	300	mA

CAPACITANCES

Grid No.1 to all other electrodes	C_{g_1}	6,5	pF
Cathode to all other electrodes	$C_{\mathbf{k}}$	6,5	pF
Accelerator to outer conductive coating	$c_{g_2(\ell)/m}$	250 to 450	pF

MECHANICAL DATA

Dimensions in mm

Mounting position: any, except with screen downwards and the axis of the tube making an angle of less than 500 with the vertical.

Base

Duodecal 7p.

¹⁾ Reference line, determined by the plane of the upper edge of the reference line gauge when the gauge is resting on the cone.

²⁾ Insulating outer coating; should not be in close proximity to any metal part.

³⁾ Conductive outer coating; to be grounded.

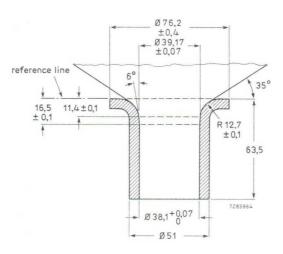
⁴⁾ Recessed cavity contact.

⁵⁾ Spark trap; to be grounded.

⁶⁾ The distance between the deflection centre and the reference line should not exceed 31 mm.

⁷⁾ Distance between the centre of the magnetic length of the focusing unit and the reference line.

FOCUSING


magnetic

DEFLECTION

magnetic

REFERENCE LINE GAUGE

Dimensions in mmm

OPERATING CHARACTERISTICS

Accelerator voltage

Beam current

beam current

 $\label{eq:noise_noise} Negative\ {\tt grid}\ No.\ 1\ {\tt cut\text{-}off}\ voltage$

Resolution at centre of screen better than 1000 lines

Vg2(l)

25 kV

Io

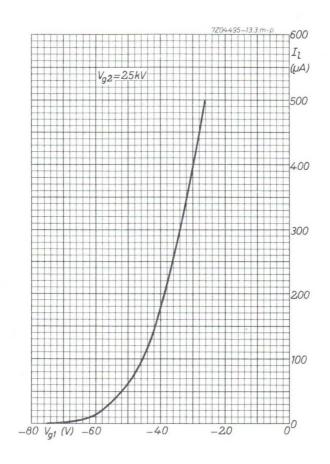
50 to 150 μA

 $-V_{g1}(I\ell=0)$ 50 to 100 V

LIMITING VALUES (Absolute max. rating system)

Accelerator voltage	$Vg_2(\ell)$	max.	27 20	kV kV
Grid No.1 voltage,				
negative value	$-v_{g_1}$	max.	200	V
positive value	$+V_{g_1}$	max.	0	V
peak positive value	$+V_{g_{1p}}$	max.	2	V
Cathode current	I_k	max.	150	μA
Voltage between heater and cathode 1)				
cathode negative	V _{kf} (k neg.)	max.	125	V
cathode positive	Vkf (k pos.)	max.	200	V
peak value, cathode positive	V _{kfp} (k pos.)	max.	410	V^2)
External resistance between heater				
and cathode	Rkf	max.	1	$M\Omega$
External grid No.1 resistance	R_{g_1}	max.	1.5	$\mathrm{M}\Omega$
External grid No.1 impedance at a frequency of 50 Hz	Z_{g_1} (f = 50 Hz)	max.	0.5	$M\Omega$

REMARKS


Measures should be taken for the beam current to be switched off immediately when one of the time-base circuits becomes defective.

An X-ray radiation shielding with an equivalent lead thickness of 0.5 mm is required to protect the observer.

 $^{^{\}rm l})$ In order to avoid excessive hum, the A.C. component of the heater to cathode voltage should be as low as possible and should not exceed 20 $V_{\rm RMS}.$

²⁾ During a heating-up period not exceeding 45 sec.

Q13-110GU

April 1984

ACCESSORIES

DEFLECTION UNIT

QUICK REFERENCE DATA

Monitor tube	
diagonal	17 cm (7 in)
neck diameter	28 mm
Deflection angle	700
Line deflection current, edge to edge at 16 kV	6,7 A (p-p)
Inductance of line coils, parallel connected	87 μΗ
Field deflection current, edge to edge at 16 kV	0,84 A (p-p)
Resistance of field coils, parallel connected	4,2 Ω

APPLICATION

This deflection unit has been designed for use with 17 cm (7 in) 70° monochrome monitor tubes in conjunction with:

line output transformer AT2102/02:

linearity control unit AT4036;

line driver transformer AT4043/56.

DESCRIPTION

The saddle-shaped line deflection coils are moulded so that the deflection centre is well within the conical part of the monitor tube. The field deflection coils are wound on a Ferroxcube yoke ring which is flared so that the frame and line deflection centres coincide. Provisions are made for centring, and correction of pin-cushion distortion. The unit meets the self-extinguishing and non-dripping requirements of IEC 65.

MOUNTING

The unit should be mounted as far forward as possible on the neck of the monitor tube, so that it touches the cone.

To orient the raster correctly, the unit may be rotated by hand on the neck of the monitor tube, with which it makes a slip fit. A screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position.

MECHANICAL DATA

Dimensions in mm

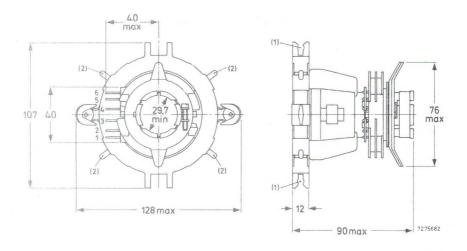


Fig. 1 Deflection unit AT1071/07. Facilities for fitting correction magnets:

- $(1) \ for \ plastic-bonded \ FXD \ magnet \ rods \ catalogue \ number \ 3122 \ 104 \ 90360;$
- (2) for plastic-bonded FXD magnets, catalogue number 3122 104 94120.

The unit is provided with solder pins for connection. The pin numbering in Fig. 1 corresponds to that in the connection diagram (Figs 2a and 2b).

ELECTRICAL DATA

Line deflection coils, parallel connected (Fig. 2a); terminals 3 and 4

Inductance	87 μΗ
Resistance	0,14 Ω

Field deflection coils, parallel or series connected (Fig. 2b); terminals 1 and 2 for parallel connected coils (terminals 1 and 6, and 2 and 5 to be interconnected); terminals

S	0					7 71	1	-	T.	-
2 and	0	Tor	serie	S COL	necte	d colls	(terminals		and	5

to be interconnected)	
Inductance (parallel connected coils)	10,4 mH
Inductance (series connected coils)	41,6 mH
Resistance (parallel connected coils)	4,2 Ω
Resistance (series connected coils)	16,8 Ω
Maximum d.c. voltage between terminals of line and field coils	2000 V

Maximum operating temperature 95 °C

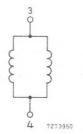


Fig. 2a Line coils.

Fig. 2b Field coils.

The following characteristics are measured at an e.h.t. of 16 kV on a 17 cm (7 in) 70° reference tube.

Sensitivity

Deflection current edge to edge

in line direction in field direction

6,7 A (p-p) 0,84 A (p-p)

Geometric distortion measured without correction magnets on a 17 cm (7 in) 70° reference tube.

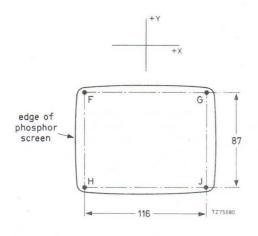


Fig. 3.

CORRECTION FACILITIES

For centring

After adjustment of the linearity of the deflection current, the eccentricity of the monitor tube and the deflection unit can be corrected by means of two independently movable centring magnets of plastic-bonded Ferroxdure. These magnets are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously.

These centring magnets cannot be used for compensating the effects of non-linearity or of phase differences between the synchronization and time base, as otherwise the correction needed becomes excessive. Even if the correction is within the range of the magnets, curved lines may appear in the centre of the raster.

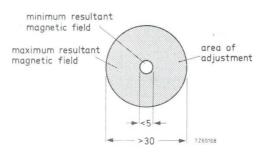


Fig. 4.

For pin-cushion distortion

Pin-cushion distortion can be corrected by two Ferroxdure magnets with pole-shoe brackets, which have been mounted on the deflection unit. Limited correction of asymmetrical pin-cushion distortion can be achieved by unequal movement of these magnets. The field strength can be adjusted by rotation of these magnets. To correct the top and bottom of the raster, two plastic-bonded Ferroxdure magnet rods* can be fitted (Fig. 1). To correct the corners of the raster, four plastic-bonded Ferroxdure magnets** (Fig. 1) can be fitted.

^{*} Available under catalogue number 3122 104 90360.

^{**} Available under catalogue number 3122 104 94120.

DEVELOPMENT SAMPLE DATA

This information is derived from development samples made available for evaluation. It does not necessarily imply that the device will go into regular production.

DEFLECTION UNIT

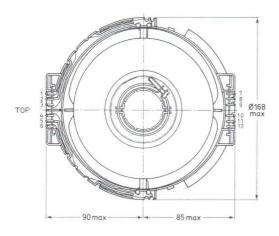
• For use with very high resolution c.r.t. M38-200.

QUICK REFERENCE DATA

Associated c.r.t.	
diagonal	38 cm (15 in)
neck diameter	36,8 mm
Deflection angle	700
Line deflection current, edge to edge, at 18 kV	4,03 A
Inductance of line coils, parallel connected	136,5 μΗ
Field deflection current, edge to edge, at 18 kV	474 mA
Resistance of field coils, series connected	23,5 Ω

APPLICATION

This deflection unit is for use with 38 cm, 70° cathode ray tube M38-200, neck diameter 36,8 mm.


DESCRIPTION

The saddle-shaped line and field deflection coils are surrounded by a Ferroxcube yoke ring in such a way that the line and field deflection centres coincide. Provisions are made for centring correction, and astigmatism correction of the spot at the screen centre. The field coils have internal damping resistors. The unit has a non-magnetic metal clamping ring for fixing to the tube neck.

The deflection unit meets the self-extinguishing requirements of UL.

MECHANICAL DATA

Dimensions in mm

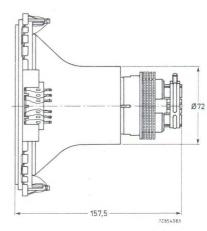


Fig. 1.

Tightening torque on clamping ring
 Torque on centring magnets

1,3 to 1,5 Nm 35 to 250 mNm

Mounting

The unit should be mounted as far forward as possible on the neck of the tube, so that it touches the cone.

The tube/coil combination is optimized for use in "portrait" scan mode, with line scan frequency up to 125 kHz; H.T. contact and top of the deflection unit upwards.

To orient the raster correctly, the unit may be manually rotated around the neck. The screw-tightened clamping ring permits it to be locked, both axially and radially, in the desired position.

ENVIRONMENTAL DATA

Maximum operating temperature (average copper temperature)

Storage temperature range

Flame retardant

Flammability

95 °C

-25 to +90 °C

according to UL94, category V-1

according to UL94, category V-1

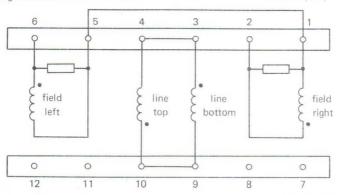
ELECTRICAL DATA

inductance

resistance

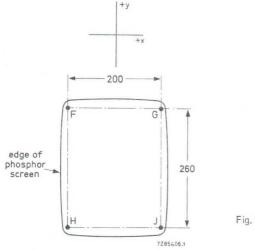
Line deflection coils, parallel connected; terminals 3 and 4, and terminals 9 and 10 interconnected (Fig. 2) inductance $136.5 \, \mu H \pm 4.5\%$ resistance 0.23Ω

Line deflection current, for 225 mm scan, at 18 kV


5,9 A ± 4%

Field deflection coils, series connected; terminals 1 and 5 interconnected (Fig. 2)

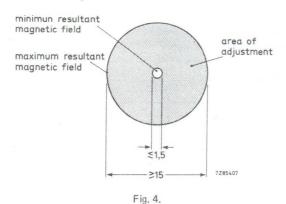
23 mH


Field deflection current, for 290 mm scan, at 18 kV Maximum voltage between line and field coils

22,5 $\Omega \pm 8\%$ 650 mA ± 3,5% 2500 V (d.c.)

7Z85405.1 Fig. 2 Diagram of the coils. The beginning of the windings are indicated with .

Geometric distortion measured without centring magnets.



 $\begin{aligned} & \text{Fy:} + 1,0 {}^{+1,0}_{-1,0} & \text{Fx:} -1,0 {}^{+1,0}_{-1,0} \\ & \text{Gy:} + 1,0 {}^{+1,0}_{-1,0} & \text{Gx:} + 1,0 {}^{+1,0}_{-1,0} \\ & \text{Jy:} - 1,0 {}^{+1,0}_{-1,0} & \text{Jx:} + 1,0 {}^{+1,0}_{-1,0} \\ & \text{Hy:} - 1,0 {}^{+1,0}_{-1,0} & \text{Hx:} - 1,0 {}^{+1,0}_{-1,0} \end{aligned}$

Fig. 3.

CENTRING CORRECTION

The eccentricity of the c.r.t. and the deflection unit can be corrected by two independently movable centring magnets, which are magnetized diametrically. By turning the magnets with respect to each other the resulting field strength is varied. The direction of the resulting magnetic field is adjusted by turning the magnets simultaneously. The magnets must be adjusted so that the curvature of the horizontal and vertical axes disappears; in general the picture will be centred at the same time, otherwise this should be corrected electronically.

ASTIGMATISM CORRECTION

The astigmatism of the undeflected beam can be corrected by two independently movable quadripole magnets, which are placed next to the centring magnets. By turning the quadripole magnets with respect to each other the resulting four-pole field strength varies. The direction of the resulting four-pole field is adjusted by turning the quadripole magnets simultaneously. The astigmatism of the undeflected beam is examined during a slow variation of the focusing voltage; the beam is free of astigmatism when the size, and not the shape, of the beam changes when the focusing voltage is varied around its optimum (Figs 5 and 6).

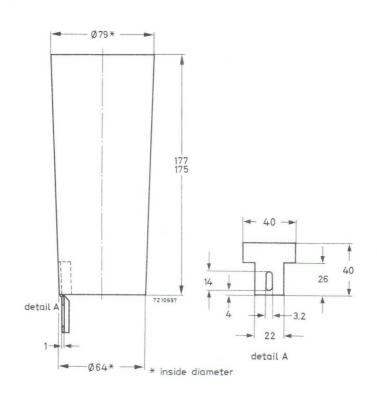
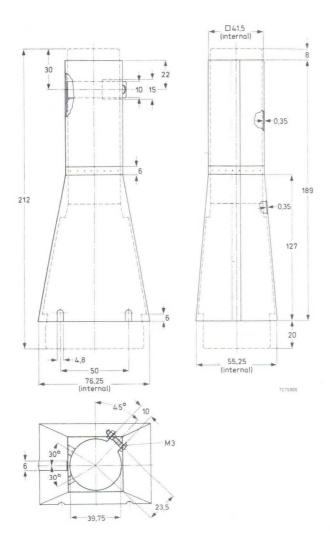
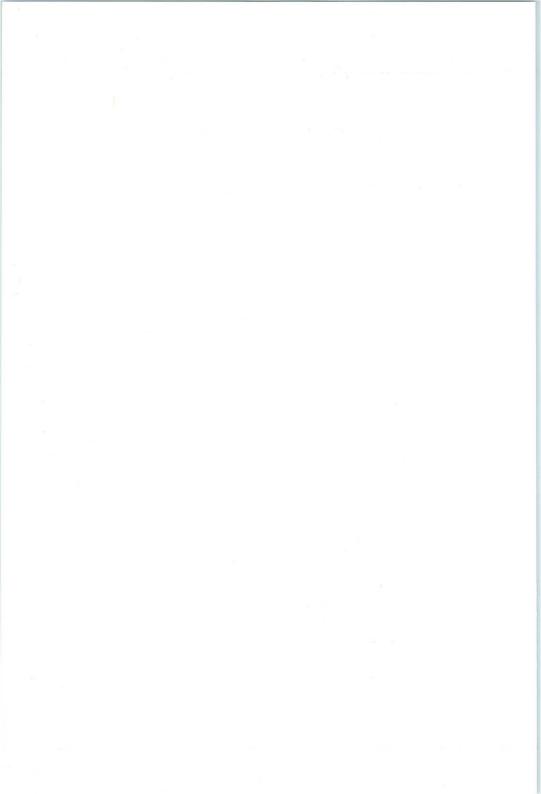
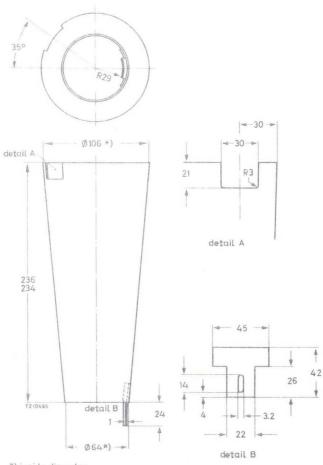


Fig. 5 Beam with astigmatism.

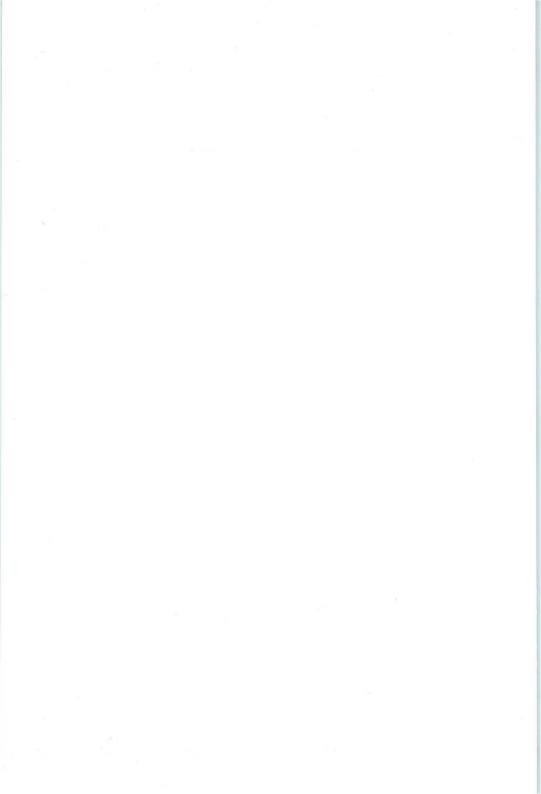
Fig. 6 Beam free of astigmatism.

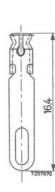

- a. Focusing voltage < optimum value.
- b. Focusing voltage at optimum value.
- c. Focusing voltage > optimum value.


MU-METAL SCREEN


Material: Mu-metal 0,35 mm thick

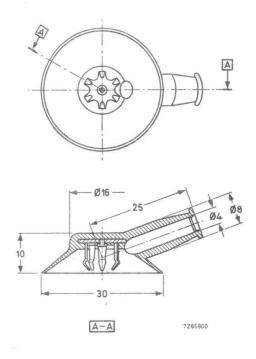
MU-METAL SCREEN


MU-METAL SCREEN

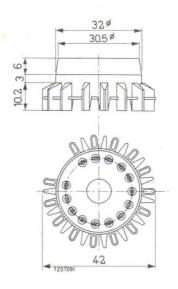

*) inside diameter

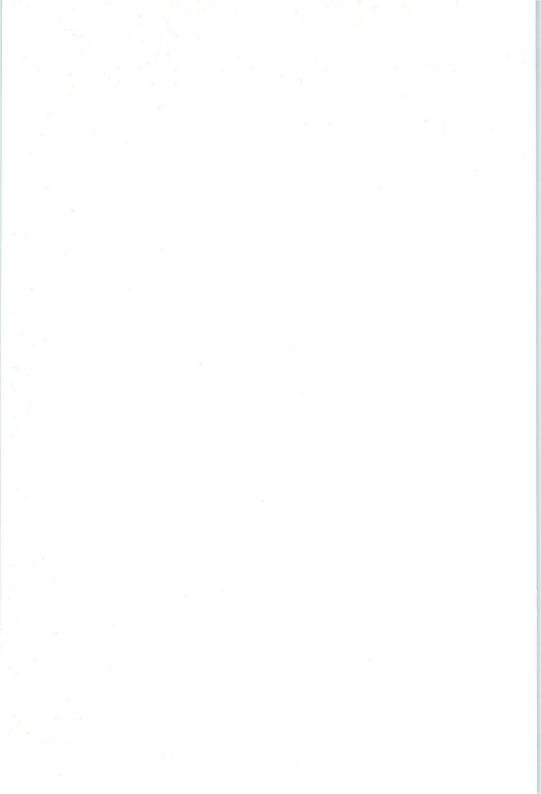
Material: Mu-metal, 0.35 mm thick

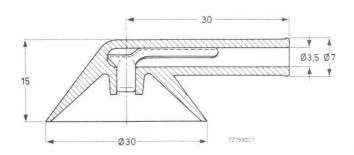
August 1969



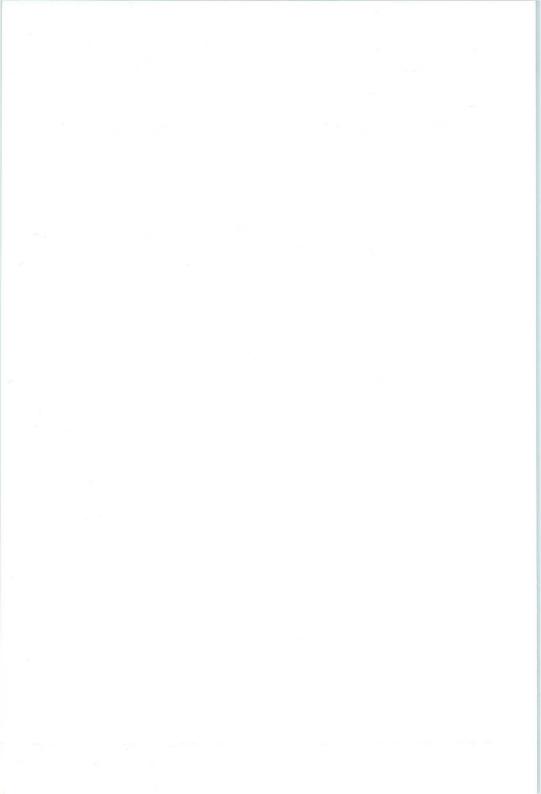
SIDE CONTACT CONNECTOR

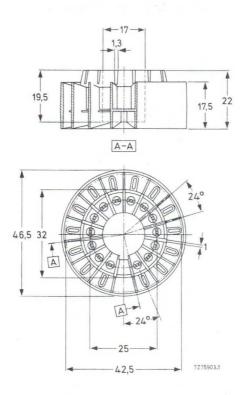

FINAL ACCELERATOR CONTACT CONNECTOR


Type 55563A supersedes type 55563.

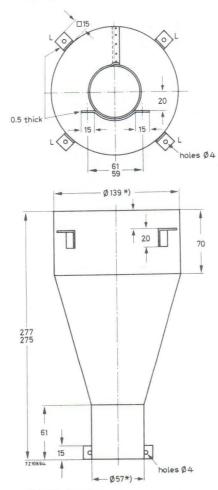

TUBE SOCKET

- For 14-pin bases
- Synthetic resin insulating material
- 14 gold-plated fork-shaped contacts
- Catalogue number for ordering: 9390 017 30000

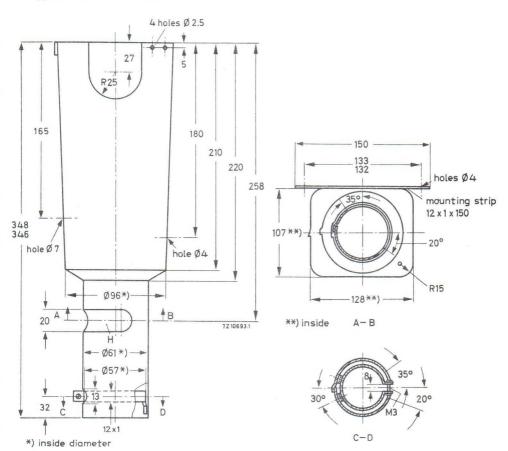




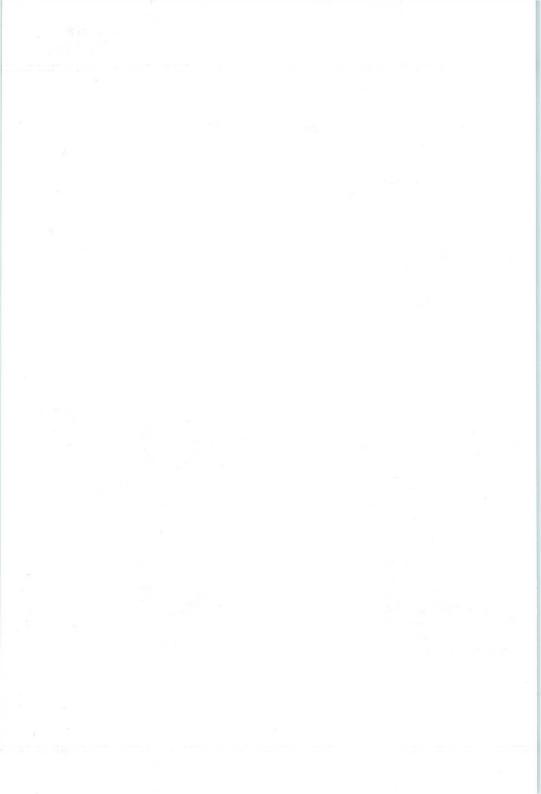
FINAL ACCELERATOR CONTACT CONNECTOR

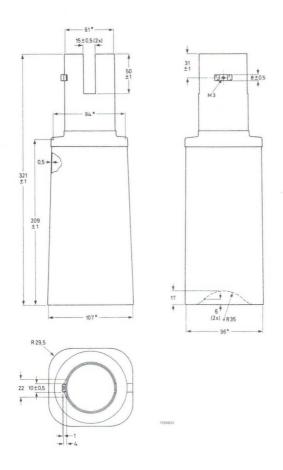


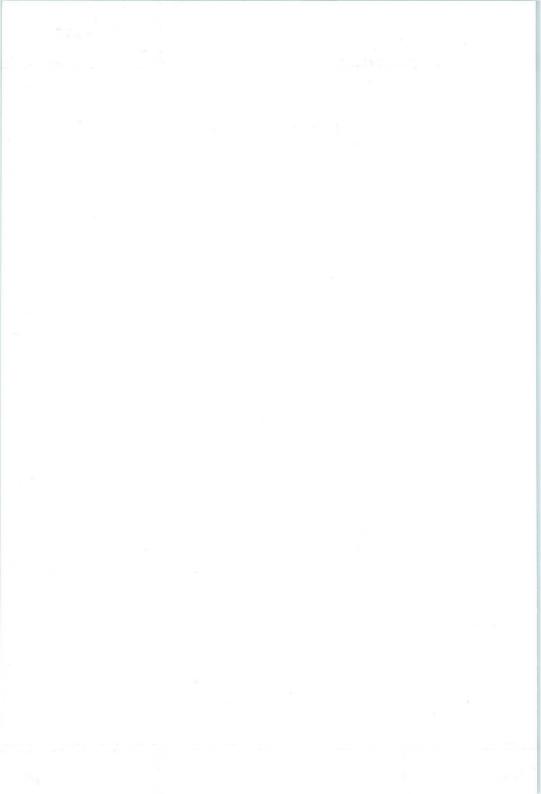
Insulating material: silicon rubber.


Type 55580A with 4 mounting lugs $\,$ L Type 55580 without mounting lugs $\,$ L

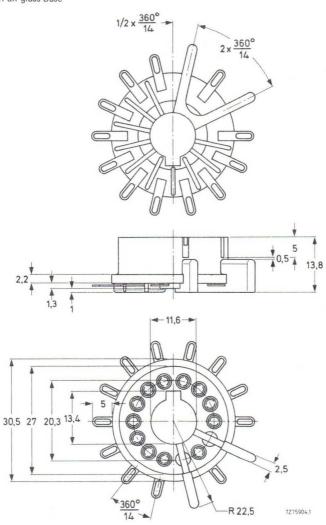
*) inside diameter

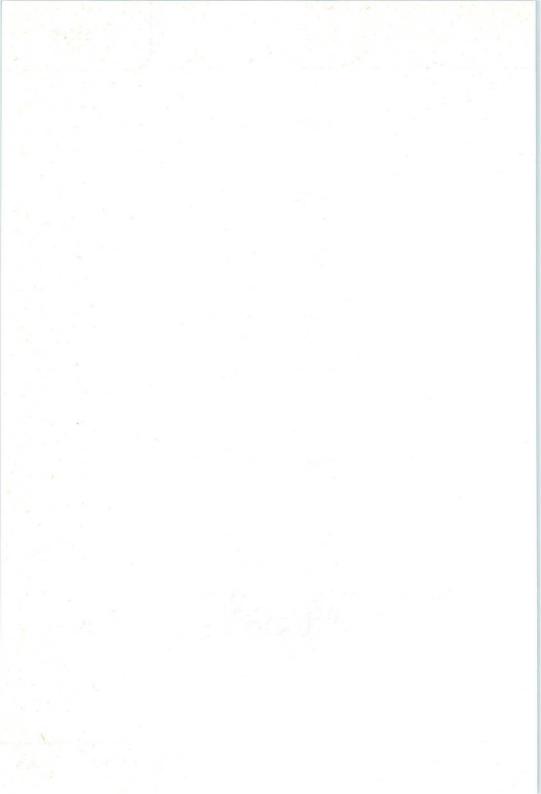

Material: Mu-metal, 0.35 mm thick

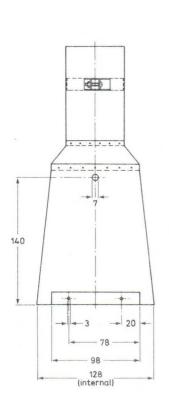

Type 55581A with hole H
Type 55581 without hole H

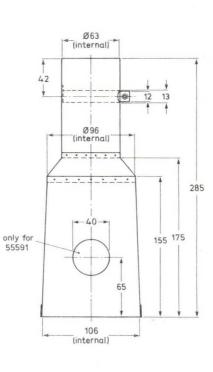

Material: Mu-metal, 0,5 mm thick.

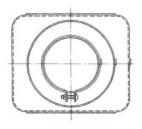
March 1972

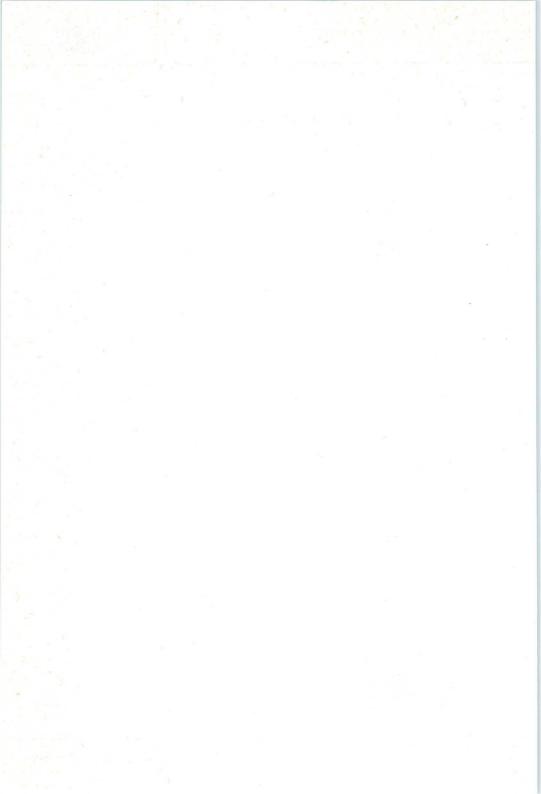


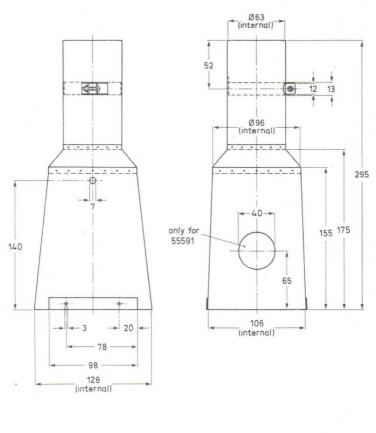


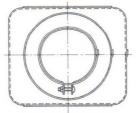

*Internal dimension

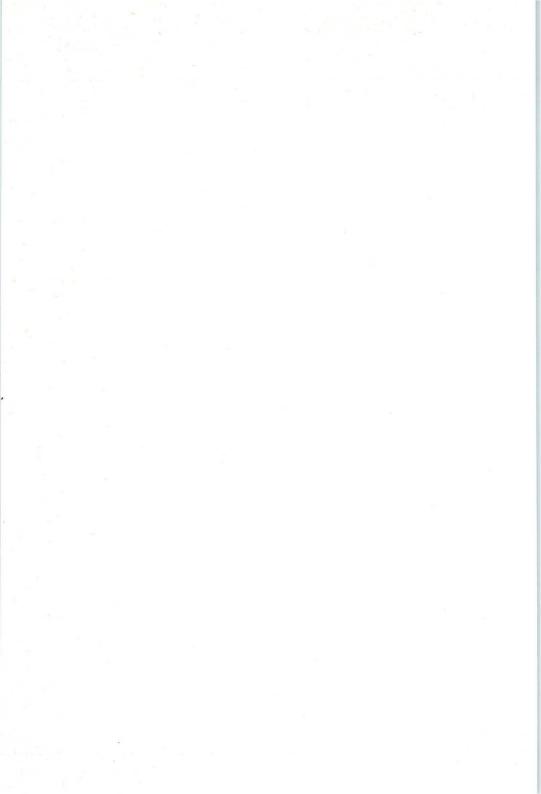


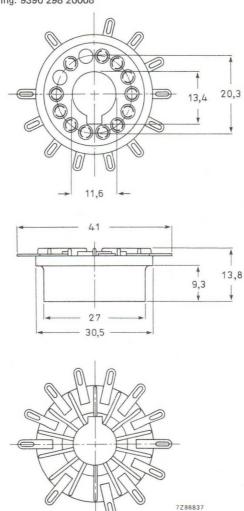

• For 12-pin all glass base

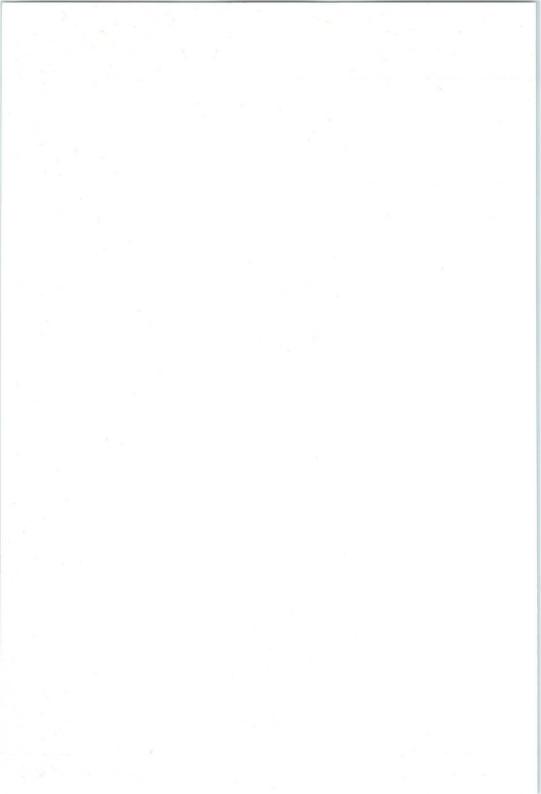


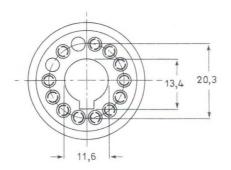


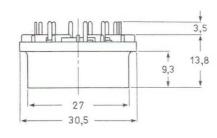


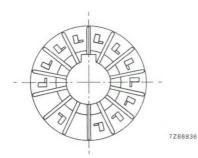

Z85410



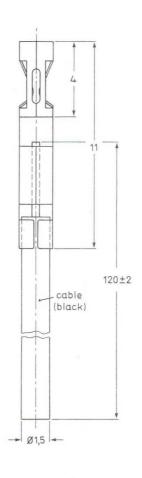

7285411

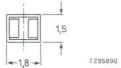

- For 12-pin all glass base, JEDEC B12-246
- Tinned contact springs
- Catalogue number for ordering: 9390 298 20008

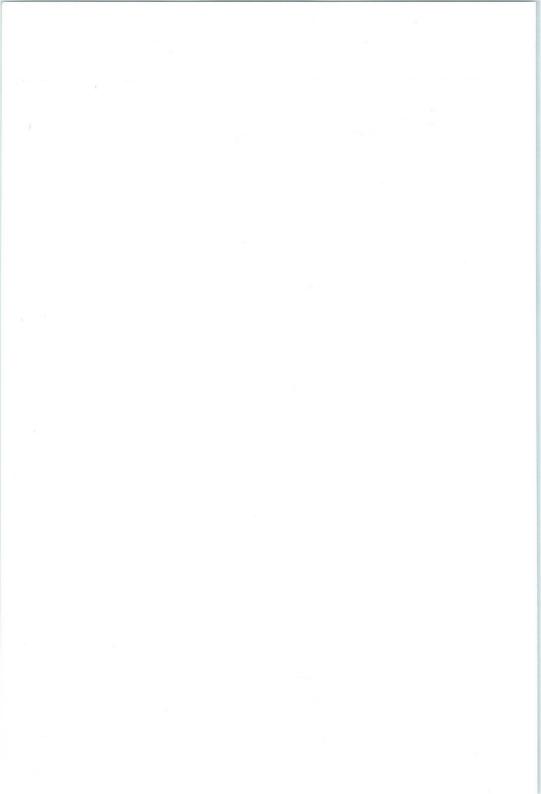



431

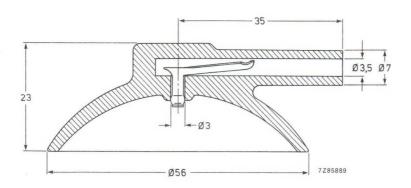
- For 12-pin all glass base, JEDEC B12-246
- Tinned contact springs
- Catalogue number for ordering: 9390 298 30008

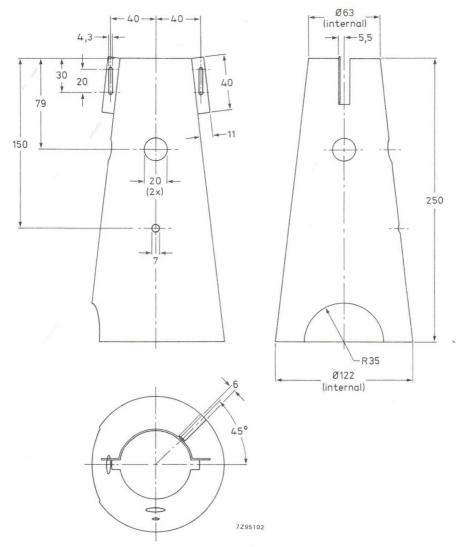


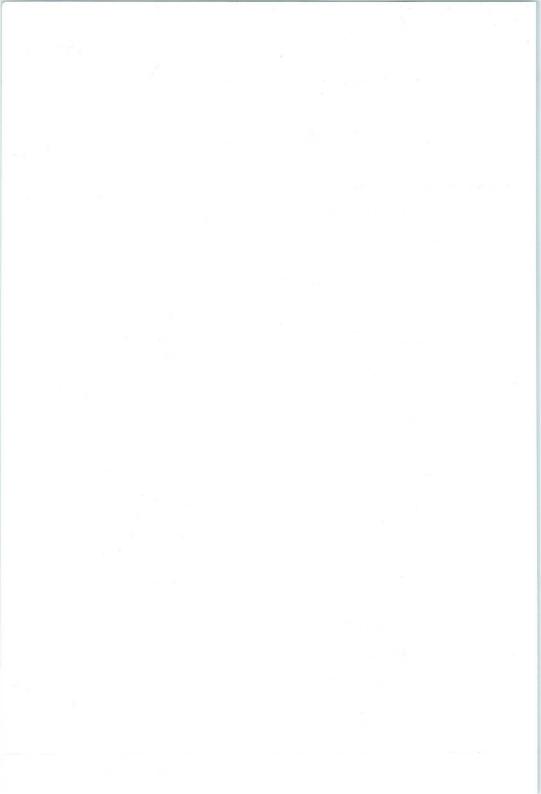


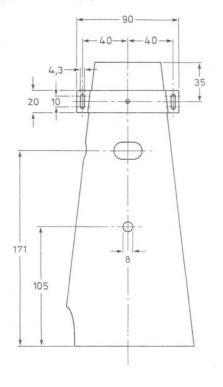


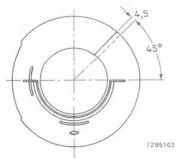
SIDE CONTACT CONNECTOR

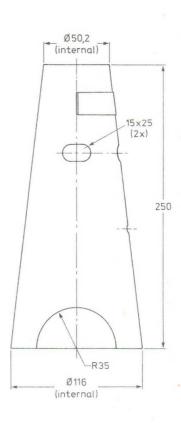

• For ϕ 0,6 mm side contacts

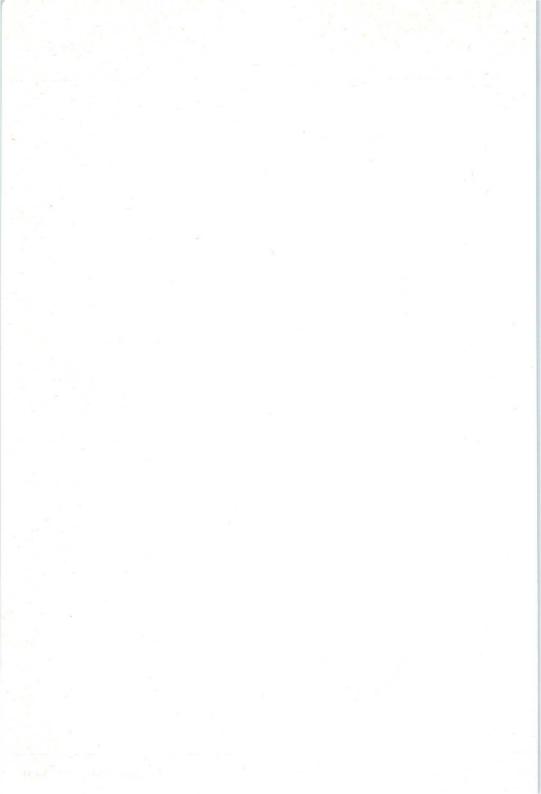



FINAL ACCELERATOR CONTACT CONNECTOR


Insulating material: silicon rubber.


• Material: mu-metal, 0,35 mm thick





• Material: mu-metal, 0,35 mm thick

BEAM CENTRING MAGNET

INSTRUCTIONS FOR USE

To obtain the best performance from an electrostatically focussed tube, it is important that the axis of the beam should coincide with that of the lens. In practice this is not always so because of small errors in geometry. By means of this magnet it is possible to adjust, if necessary, the position of the beam and so produce a true alignment in every case. The effect is illustrated in Figs 1a and 1b which show enlarged views of a single element in a spot raster under the special operating conditions given in the directions for setting. With a well aligned beam, an image such as that in Fig. 1a can be seen. Very small errors will produce a spot as shown in Fig. 1b where the brightest part of the image does not appear in the centre of the diffused area or haze. In such a case, the picture quality would be good but with only a small adjustment of the beam, so that the brightest part becomes central, a noticeable improvement can be made.

The unit has a non-magnetic ring containing a diametrically magnetized Ferroxdure core and two soft-iron pole pieces covered with plastic material to protect the glass surface.

Fig. la

Fig. 1b

The field strength can be altered by turning the core as indicated in Fig.2, and the direction by turning the whole unit. Moving the unit along the neck of the tube will cause a small change in the position of the beam but it is most effective at about 20 mm from the cap (Fig.3).

a) minimum

b) maximum

c) intermediate

Fig. 2

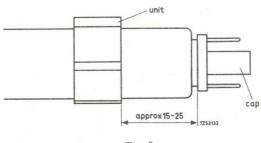


Fig.3

SETTING

This can best be done with a spot raster on the screen, and by observing one of the elements near the centre. A suitable raster would have, for instance, a spot duration of $1/6~\mu s$ with a repetition time of $6~\mu s$ and an image as in Fig. 1 can then be produced with the following conditions.

*) To avoid burning the screen, adjust slowly from -50 V to zero

Set the unit on the neck at about 20 mm from the cap and turn it until the brightest part of the image appears central in the haze.

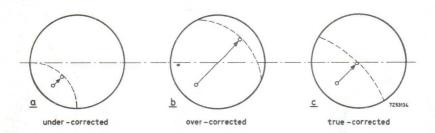
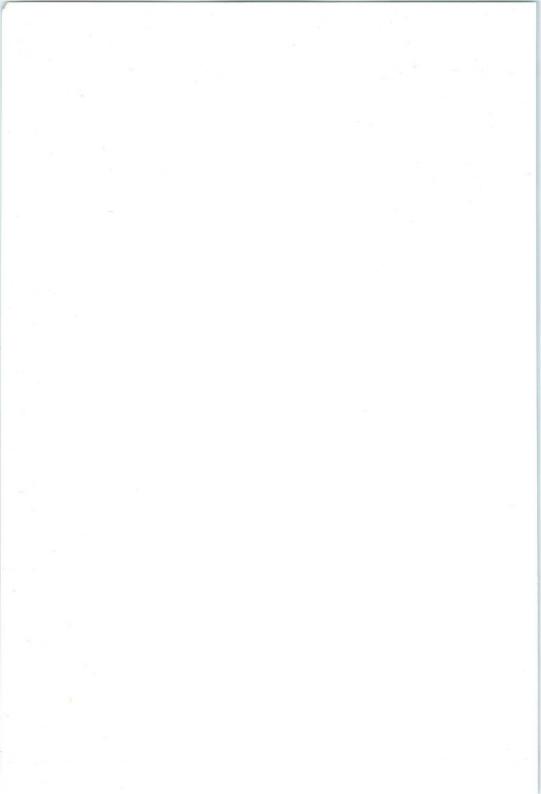
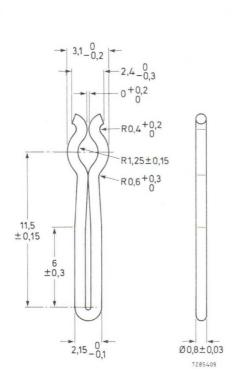
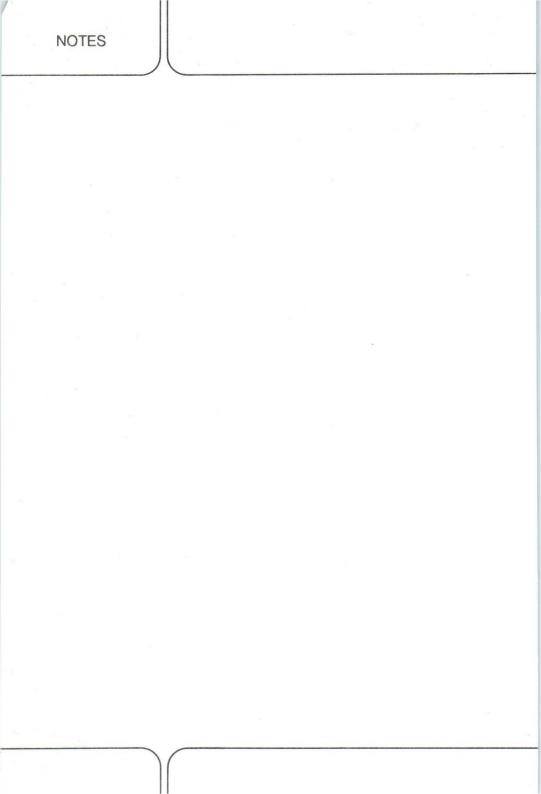


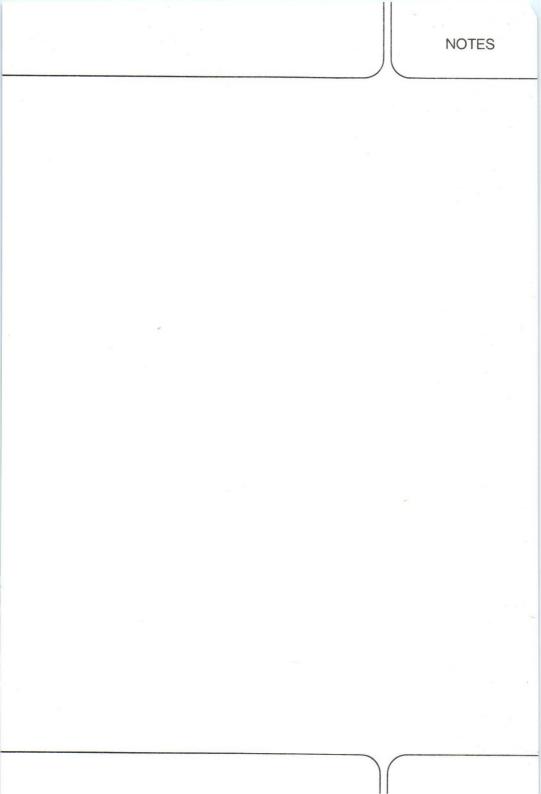
Fig.4

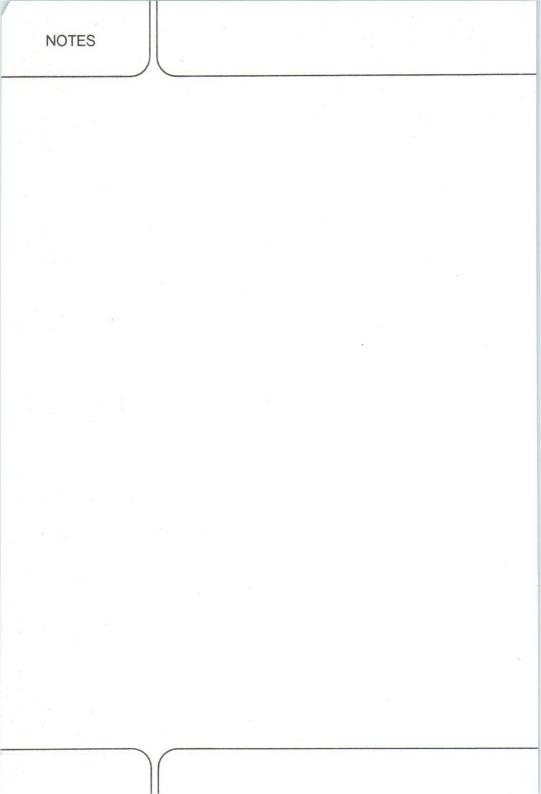

The diagrams in Fig. 4 show the process of adjusting the brightest part from its original position to the centre. The distance between the two points will be determined by the field strength, and the position of the new point along the dotted line will depend on the direction of the field.

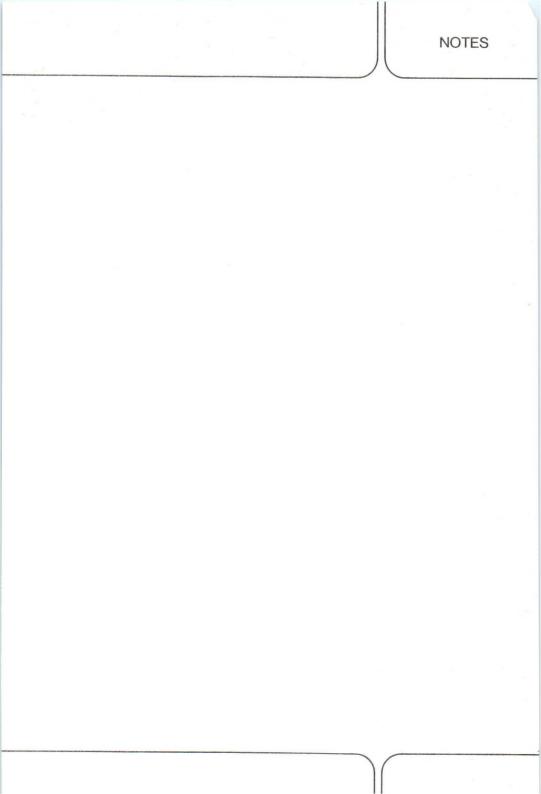
If the magnet is under or over-correcting as in (Figs 4a and 4b), the field strength must be changed. To do this, remove the unit from the neck, push the core out sufficiently to get a finger grip and turn it towards maximum or minimum Figs 2a and 2b as required. Return it to the stop in the clamp and set the unit once again on the neck.

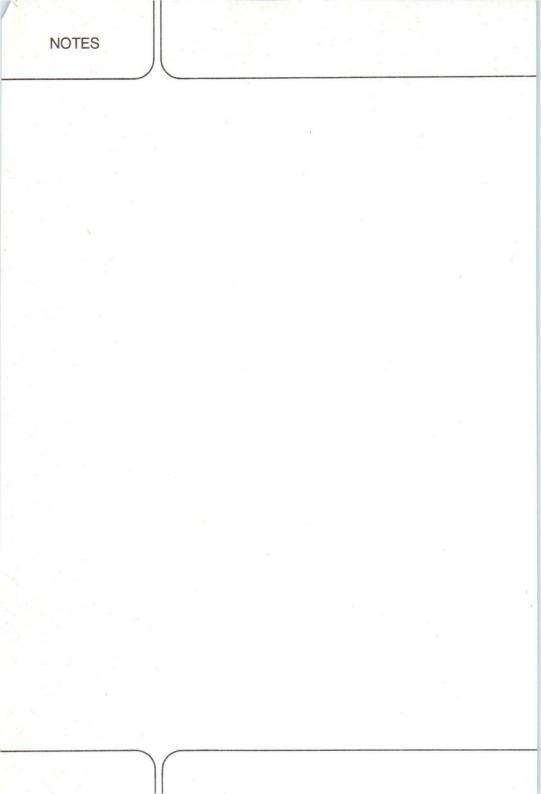

If the means of producing a spot raster are not available, a test pattern or suitable picture can be used when setting. It is not easy with this method, however, to assess the degree of change needed in field strength or direction but if a start is made with the line on the core set at about 20° from the minimum position in Fig. 2, an improvement can be made in most cases where it is required. In others, it may be necessary to try one or two further core settings, but with a little experience it is not difficult to find an arrangement which gives the best vertical and horizontal resolution.

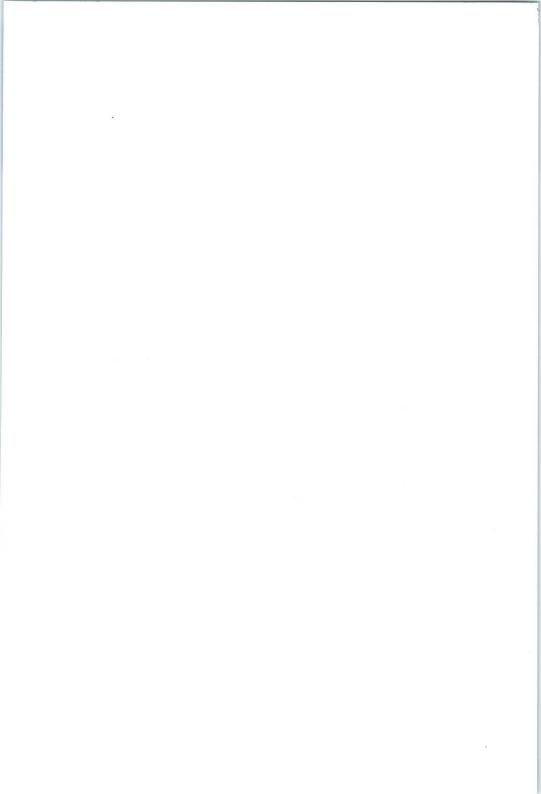

The unit should be sufficiently tight on the neck to prevent movement during transit but if, for some reason, this does not appear to be so, the bends on the ring should be compressed slightly.


July 1973




SMALL BALL CONTACT CONNECTOR





Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies

Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545. Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 4270888.

Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.

Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.

Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No.51 + 39, BOGÓTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 54 1133.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1727

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 338 80-00.

France: R.T.O. DA RADIO TECHNIQUE-COMPELEY, 130 AVEITURE LEGION ROLL, 130 AVEITURE LEGION ROLL,

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Panim Bank Building, 2nd Fl., Jl. Jend. Sudirman, P.O. Box 223, JAKARTA, Tel. 716131. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521.

Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Élcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-4202. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11.

Mexico: ELECTRONICA, S.A de C.V., Carr. Mexico-Toluca km. 62.5, TOLUCA, Edo. de Mexico 50140, Tel. Toluca 91 (721) 613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333.

New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914.

Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200. Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070.

Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121.

Fortugal: Fricing FOrt Godd-SASARL: Av. Elig. Dutine Facilitotto, Lord Godd-Text Godd-Text Godd-Text Godd-Text Singapore (Singapore) PELITD. Electrona Div. Lord Godd-Text Godd-

Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000

Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211.
Taiwan: PHILIPS TAIWAN LTD., 3rd Fi., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. (02)-5631717.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.

Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80. ISTANBUL, Tel. 435910.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633

United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000

(Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N. Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 91 4321.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 36 05 11

For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE-3, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304, Telex 35000 phtcnl

©1984 Philips Export B.V

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher.

A40